
SketchSim: Interactive Simulation of Ink Brushstrokes  
 

 

Nicole Sultanum and Silvio B. Melo (orientador) 

Centro de Informática - UFPE 

 

 

Abstract 
 

There is an increasing demand for new 

computational solutions in art and design, for digital 

illustrations, games, animation, among others. In order 

to address this need, several ideas have been 

developed in the artistic field, and one of them is 

concerned with the simulation of real artistic 

instruments, such as pencil, watercolor, etc. The 

simulation of ink and brushes, one of these 

instruments, is the object of study of this paper. Several 

techniques are discussed and implemented in an 

interactive artistic tool, called SketchSim. Artists have 

used this tool as part of a brief qualitative analysis, 

which is also discussed in this paper. 

 

 

1. Introduction 
 

The computational simulation of artistic instruments 

(such as pencil, charcoal, pastel, watercolor, among 

others) is a steadily growing field in NPR [2] (or Non-

Photorealistic Rendering), in face of the current needs 

for more sophisticated and intuitive tools for the 

creation of drawings. In digital illustration, the 

simulation of such instruments is sought by artists who 

wish to ease or improve their creative experience 

through computational solutions that offer new 

features, such as making slight adjustments, undoing 

strokes or trying out numerous colors. These 

functionalities are among those which, most of the 

times, may only be seized through digital means. 

Nevertheless, the effective digital simulation of a 

real artistic tool is usually followed by great 

challenges. Here, we define “effective” solution as one 

which goes beyond the proper simulation of the real 

tool, and also: 

(1) Provides intuitive means for the creation of 

artistic strokes; 

(2) Offers resources for later modifications on the 

strokes, as part of the complementary experience 

the computational environment should provide; 

(3) Renders fast enough for interactive use. 

 
 Figure 1. “Cat”, illustration produced on 

SketchSim
1
 

 

According to this scenario, this paper joins several 

techniques for the simulation and post-edition of ink 

brushstrokes, applied in the implementation of an 

interactive drawing tool called SketchSim. 

 

1.1. Related Work 
 

Many strategies have been proposed, concerning the 

simulation of artistic brushstrokes. Strassmann [6] 

presents a physically based approach for rendering 

strokes in sumi-e style, which produces realistic 

results, but requires too much user intervention and is 

too slow for interactive use. Skeletal Strokes [3] are 

also inappropriate for our purposes since there is a 

constant dependency of an image in order to reproduce 

different styles and is also too computationally 

intensive (since it is based on texture mapping 

strategies), not mentioning its weaknesses on resizing 

operations (as pointed by Su et. al. [7]). Su et. al. [7] 

present techniques for the creation of analytical strokes 

with variable width, having the disadvantage of 

requiring the explicit specification of control knots. 

Pudet [4] has also created analytical strokes with 

variable width, which are mapped to pressure levels 

acquired from a tablet device. These works usually 

spend little or no effort on fulfilling all of the 

additional requirements mentioned in the Introduction 

(intuitiveness, flexibility and efficiency). 

                                                           
1 By Zózimo Neto. 



2. Simulation of ink brushstrokes 
 

Our stroke rendering process was heavily inspired 

on the work of Schneider [5] and Pudet [4] . A tablet is 

used as primary input device, since it provides pressure 

data, and a more intuitive interaction. 

This process is composed of two main steps. The 

first one, the curve fitting step, creates a vector 

description for the user trajectory, specified through 

the tablet. In SketchSim, such as in [5], piecewise cubic 

Bézier curves with G
1
 continuity were chosen to 

analytically represent the trajectories. The second one, 

the border fitting step, is responsible for simulating the 

appearance of an artistic stroke surrounding the vector 

trajectory which is resulted from the first step. Both of 

these steps are described on the next sections. 

 

2.1. Curve Fitting 
 

This step concerns the creation of an analytical 

description for the user trajectory. Initially, this 

trajectory is represented by a sequence of two-

dimensional points (plus the corresponding pressure 

value, which is used in the border fitting step) provided 

by the tablet device, each of them captured in regular 

intervals of 10ms. This sequence goes through a few 

pre-processing steps (inspired by Schneider [5]), and is 

subsequently submitted to a least squares algorithm. 

The trajectory points firstly undergo a pre-reduction 

step, for the high sampling frequency of the tablet 

device usually produces redundant point sets: points 

which are closer than 5 pixels are ignored. 

Discontinuities are also checked, represented by pointy 

corners, which are detected by the existence of angles 

sharper than 140° in the trajectory. Schneider also 

proposes another two pre-processing steps, which were 

eventually discarded. One of them, the noise removal 

step, was contributing negatively for the curve fitting 

process (Pudet [4] has also observed this 

phenomenon). The other step, the linear splines 

reduction, was also not used: it was proposed as an 

ultimate reduction of the sampling set, but the author 

himself mentioned that it could be discarded if the 

rendering process were to work fast enough without it 

(which has happened, indeed). 

After pre-processing, the curve fitting process may 

start. Schneider [5] describes it in detail. In short, it 

consists of several iterations of (1) fitting of a curve 

and (2) evaluation of the resulting curve. The stage (2) 

measures the quality of the fit of the curve produced in 

(1), by checking the distance from the sampling points 

to the curve. The Newton-Raphson method is used in 

order to find the point on the curve which lies closest 

to each sampling point. If the fit doesn’t reach an 

acceptable closeness after a predefined number of 

iterations, then the points sequence is subdivided on 

the point of greatest error, and the curve fitting 

procedure restarts for each of the new sequences. It 

results in the creation of several cubics to represent a 

trajectory, as illustrated by the rightmost image on 

Figure 2. 

 

 
Figure 2. Steps of the curve fitting algorithm 

 

2.2. Border Fitting 
 

The border fitting step starts right after the curve 

fitting step. The technique described in this section is 

based in the work of Pudet[4], and may be considered 

as a simpler version of his border fitting method, 

specialized in circular brushes. 

The tablet provides, for each sampling point, a 

value corresponding to the pressure applied on that 

location. The curve fitting step also computes the 

corresponding parametric value ti of each sampling 

point in the trajectory. With these data at hand, it is 

possible to associate pressure data directly into the 

analytical curve.  

Take pressi as the corresponding normalized 

pressure value of the sampling point di, and el as an 

elasticity value which limits the maximum width a 

stroke may have. The normalized tangent for each 

parametric position of samples di (let’s say, Q(ti)) is 

computed through the De Casteljau algorithm. Then, in 

the direction perpendicular to the tangent at Q(ti), two 

points are located in this trail. These two points have 

distance to Q(ti) equal to �� �  ������ , and represent 

points on each of the right and left borders. An 

example is illustrated in Figure 3. 

 

 
Figure 3. Border Points 

 

This procedure is repeated for all samples di, 

resulting in two sequences: the left and right border 

points. Finally, these sequences are vectorized by the 

same curve fitting algorithm described in section 2.1. 

The final result consists of two independent 

piecewise Bézier cubics, one for each border side. 



Figure 4 shows, in the middle, the border points 

generated after the analytical trajectory on the left is 

processed. On the right side, one can see the final 

stroke, after applying curve fitting to the borders. 

 

 
Figure 4. Border Fitting steps 

 

3. Stroke Edition 
 

Bartels and Beatty [1] presented a simple technique 

for modifying Bézier curves based on the displacement 

of any point in the curve, only adjusting its control 

points. This strategy is very convenient since it allows 

the implementation of drag-and-drop-based 

adjustments. The ability to choose which control points 

should be moved is another advantageous 

characteristic of this technique. Meanwhile, only the 

adjustment of isolated Bézier curves (and B-splines, 

which are not relevant to us) were analyzed in [1]. In 

this work a novel mechanism was required; one that 

could maintain G1 continuity between adjacent 

segments after adjustment of any cubic in the analytic 

trajectory. 

Nevertheless, before adjusting the trajectory, it is 

required to detect which of its cubics must be 

modified, and also to identify which point of this curve 

should be displaced (more specifically, the parametric t 

value which represents a point in a Bézier curve), 

taking the user specified start point ps = (x,y) as the 

sole input (the beginning of the drag-and-drop 

operation). The problem is then reduced to the 

computation of the distance between a point ps and a 

Bézier curve. We used a technique based on 

subdivision, which divides the curve into smaller 

pieces until they are close enough to line segments. 

When such condition is reached, the projection of the 

point p is computed on the line segment defined by the 

endpoints of this sub curve. If the projection is placed 

between the endpoints, an interpolation is made 

between the endpoint parameter values (which are 

known) to estimate the t parameter of the projection. 

Several candidate points on the curve may be found 

through this process. We choose the one which has the 

smallest squared distance from ps. 

After determining t, it is possible to perform the 

displacement of the control points. Let’s define that an 

arbitrary trajectory is composed of n adjacent cubics c0 

to cn-1. Supposing that ck, 0 < k < n-1, was identified as 

the cubic to be displaced, then its control points b0_k, 

b1_k, b2_k and b3_k will be modified to the new 

points 	
�_, 	
�_, 	
�_ and 	
�_, such that the 

corresponding curve �̂ passes through the new point 

pe (the endpoint of the drag-and-drop operation). After 

that, the curves ck-1 and ck+1 must be readjusted, in 

order to assure that the points 	
�_, 	
�_ (which is equal 

to 	
�_��) and 	
�_�� are collinear (as shown in Figure 

5). The same condition must be verified on the points 

	
�_, 	
�_ (equal to 	
�_��) and 	
�_��. 

Let’s rename the points b2_k, b3_k e b1_k+1  to a, b and 

c, as illustrated on Figure 5. After the adjustment of the 

curve ck, a and b are modified to �� and 	
, respectively. 

The point �̂ is defined as a point lying on the line 

defined by �� and 	
 which keeps the same proportion 

between the segments �	/	� (composed by the earlier 

points a, b and c) and ��	
/	
�̂. 

 

 
Figure 5. The control points of two adjacent 

curves in a trajectory 

 

Not always are all the four control points adjusted 

on each modification. As a matter of fact, for the first 

cubic on a trajectory, its control point b0_0 is locked, 

and only b1_0, b2_0, and b3_0 are displaced. This 

behavior was adopted since it was taken as more 

intuitive and predictable. 

Nonetheless, if the user tries to displace a point 

close enough to b0_0, it is expected that one wishes to 

modify the endpoint of the curve, and then b0_0 is also 

moved (as suggested by [1]). 

This whole adjustment process is applied to the core 

trajectory of a stroke (the zero-width curves generated 

after the curve fitting step). After this edition process, 

the borders must be recalculated for the new trajectory, 

as described in the Section 2.2. 

 

4. Results and Discussion 
 

As discussed in the introduction of this paper, this 

work was focused on the creation of an ink 

brushstrokes simulator which, beyond properly 

renderizing the strokes, could also satisfy other 

requirements: provide efficiency, complementary 

resources and intuitive means of user interaction. 

The form of interaction is quite simple and 

straightforward, since the artist may work with a tablet 

device almost as if it was a regular pen (which is a very 

familiar tool). During the drawing of a stroke, an 

approximate outline of the final result is presented to 



the user. When it is finished, the trajectory is computed 

and fully renderized. Experiments have shown that the 

whole process operates quickly enough, allowing its 

use on interactive systems. 

        
Figure 6. Untitled Illustrations

2
 

 

In order to evaluate the user interaction and the 

quality of the strokes, SketchSim was used and 

analyzed by eight end users, including designers and 

digital artists. Figures 1, 6 and 7 represent some of the 

resulting illustrations. They evaluated positively the 

tool, particularly emphasizing the intuitiveness of the 

stroke creation process in comparison to the quality of 

the strokes created. They also observed that the 

generated curves were coherent and adherent to what 

they were trying to draw. 

 

 
Figure 7. “Airman”

3
 

 

This study has also encountered some problems 

concerning the stroke rendering process, consequence 

of the instability of the Newton-Raphson method. This 

technique, used in the curve fitting algorithm, 

eventually computes inadequate values which result in 

anomalous strokes. 

 

 
Figure 8. Example of an inappropriately 

local adjustment 

 

A small issue was also observed on the stroke 

edition technique, due to the fact that the maintenance 

of continuity considers only the immediately adjacent 

                                                           
2 By Frederico de Melo (left) and Antunes Neto (right). 
3 By Fradique Filho. 

segments. When the cubics generated by the curve 

fitting algorithm are too short, the edition effects are 

also reflected in a very small area of the stroke, 

resulting in an uneven appearance, as illustrated in 

Figure 8. 

 

5. Conclusions and Future Work 
 

An artistic ink brushstroke simulator was 

developed, which uses pressure data provided by a 

tablet device to represent width variations on a stroke. 

The strokes are represented by analytical curves which 

provide flexibility on further readjustments while 

maintaining resolution quality. A stroke edition 

technique was developed, based on intuitive ‘drag and 

drop’ operations. The simulator was also evaluated by 

artists, validating its artistic potential. 

One possible future work that could increase this 

potential is the simulation of ink dilution effects (such 

as in [7]). Another idea would be to explore more 

advanced types of curve modification beyond position 

readjustment. Width edition along the strokes, for 

example, would be quite helpful for the artists. Another 

possible example of stroke edition is the redraw, as 

proposed by Schneider [5] for zero width curves, but in 

this case considering the continuity aspects of the 

borders on the endpoints of each edited portion of a 

curve. 

 

6. References 
 

[1] R. H  Bartels and J. C  Beatty, “A Technique for the 

Direct Manipulation of Spline Curves”. Proceedings of 

Graphics Interface '89, p.33-39, 1989. 

 

[2] B. Gooch and A. Gooch, Non-Photorealistic Rendering, 

A. K. Peters, 2001. 

 

[3] S. C. Hsu and I. H. H. Lee, “Drawing and animation 

using skeletal strokes”. Proceedings of the 21st annual 

conference on Computer graphics and interactive techniques, 

ACM Press, pp. 109-118, 1994. 

 

[4] T. Pudet, “Real Time Fitting of Hand-Sketched Pressure 

Brushstrokes”. Computer Graphics Forum, 13(3), pp. 205-

220, 1994. 

 

[5] P. J. Schneider, Phoenix: An interactive curve design 

system based on the automatic fitting of hand-sketched 

curves, Master’s Thesis, University of Washington, 1988. 

 

[6] S. Strassmann, “Hairy Brushes”, Computer Graphics 

(SIGGRAPH '86 Proceedings), 20(4), pp. 225-232, 1986. 

 

[7] S.L Su et. al., “Simulating Artistic Brushstrokes Using 

Interval Splines”. The 5th International Conference on 

Computer Graphics and Imaging, pp. 85—90, 2002. 


