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Abstract

Tensor scale is a morphometric parameter that unifies
the representation of local structure thickness, orientation,
and anisotropy, which can be used in several computer vi-
sion and image processing tasks. We exploit this concept for
binary images and propose two shape descriptors – Ten-
sor Scale Descriptor with Influence Zones and Tensor Scale
Contour Saliences. It also introduces a robust method to
compute tensor scale, using a graph-based approach – the
image foresting transform. Experimental results are pro-
vided, showing the effectiveness of the proposed methods,
when compared to other relevant methods with regard to
their use in content-based image retrieval tasks.

1. Introduction

The recent growth of the World Wide Web and the new
technologies that became available for image acquisition
and storage have increased the demand for image retrieval
systems based on image properties. In content-based image
retrieval (CBIR) systems, image processing techniques are
used to describe the image content, encoding image prop-
erties – shape, color, or texture – that are relevant to the
query. These properties are processed by image descriptors
that can be characterized by two functions: a feature vec-
tor extraction function and a similarity function that com-
putes the similarity between images based on their feature
vectors [7].

The shape of an object is an important and basic visual
feature for describing image content [16]. Shapes are of-
ten the archetypes of objects belonging to the same pattern
class, and can be used in a wide range of practical prob-
lems, such as document analysis (optical character recogni-
tion), internet (content-based image retrieval), security (fin-
gerprint detection), etc [6].

This work focus on shape feature extraction and de-
scription for CBIR systems and, for this purpose, we
need a parameter for characterizing the structures presented

in the images. In [15], Saha introduces a new concept
called tensor scale – a local morphometric parameter that
yields a unified representation of structure size, orienta-
tion, and anisotropy. We extend the application of tensor
scale, proposing two shape descriptors – Tensor Scale De-
scriptor with Influence Zones (TSDIZ) and Tensor Scale
Contour Saliences (TSCS). We also present a much faster
tensor scale computation, as compared to previous meth-
ods [15, 14], by exploiting the Euclidean Image Foresting
Transform (Euclidean IFT) [10]. This new tensor scale al-
gorithm can also be applied to the solution of other prob-
lems not related to image description, such as clustering,
classification, image filtering and image registration.

The complete work1 is available at [1] and its related
publications are [2, 3].

This paper briefly overviews the methods as follows.
Section 2 describes the previous methods for computing
tensor scale and also the new method proposed for binary
images. Section 3 describes the proposed shape descriptors
and Section 4 shows the related experiments and results. Fi-
nally, Section 5 concludes this paper.

2. Tensor scale

In [15], Saha introduced the tensor scale of a pixel p in a
gray-scale image as the largest ellipse within the same ho-
mogeneous region, centered at p. The homogeneous region
is defined based on small differences between the pixels’ in-
tensity.

Tensor scale defines the ellipse by three factors:

• Orientation(p) = angle between t1(p) and the hori-
zontal axis;

• Anisotropy(p) =

√
1− |t2(p)|2
|t1(p)|2

;

• Thickness(p) = |t2(p)|;

1 This paper contains extracts of the M.Sc. dissertation named ”De-
scritores de forma baseados em tensor scale” by Fernanda A. Andaló.



where |t1(p)| and |t2(p)|, with |t1(p)| ≥ |t2(p)|, denote the
length of the two semi-axis of the ellipse centered at p. Fig-
ure 1 illustrates the components to compute each one of
these factors.

Figure 1. Tensor scale factors.

In the following subsection, we describe two previously
proposed tensor scale computation methods for gray-scale
images [15, 14]. After that, we provide a faster tensor scale
computation for binary images.

2.1. Tensor scale for gray-scale images

In Saha’s approach [15], a tensor scale ellipse is calcu-
lated from sample lines that are traced around a given pixel,
from 0 to 179 degrees (Figure 2(a)). The axes of the ellipse
are determined by computing the image intensities along
each of the sample lines and the localization of two opposite
edge points on these lines (Figure 2(b)). The next step con-
sists of repositioning the edge locations to points equidistant
to that given pixel, following the axial symmetry of the el-
lipse (Figure 2(c)). The computation of the best-fit ellipse to
the repositioned edge locations is done by Principal Com-
ponent Analysis (PCA) (Figure 2(d)).

These computations are performed for every pixel of
the image and a critical drawback is that the computa-
tional cost of the algorithm makes the method quite pro-
hibitive for more complex tasks, such as image description
for content-based image retrieval. For this reason, Miranda
et al. [14] proposed an efficient implementation of the orig-
inal method, which differs in the following aspects.

The first change was in the localization of the edge
points. Miranda’s approach proposes to go along each pair
of opposite segments, alternately and at the same time, in-
stead of going along one entire segment by turn. By doing
this, the reposition phase is no longer necessary. The sec-
ond change was the use of two connected thresholds to im-
prove and simplify the original method of detecting edges.
The third and final change was the improvement of the el-
lipse computation phase. Miranda et al. proposed a func-
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Figure 2. Tensor scale Computation.

tion g (Equation 1) that gives the angle of the ellipse di-
rectly, instead of using PCA. The ellipse orientation is ob-
tained from the value of γ that minimizes the function

g(γ) =
∑

i=1,2,...,2m

[x2
iγ
− y2

iγ
], (1)

where xiγ = xi cos(γ) − yi sin(γ), yiγ = xi sin(γ) +
yi cos(γ), (xi, yi) are the relative coordinates of the edge
points with respect to the center pixel p = (xp, yp) of the
ellipse, and (xiγ , yiγ ) are the new coordinates after apply-
ing a rotation by the angle γ.

In the next subsection, we provide a faster tensor scale
computation, as compared to the described approaches [15,
14], by exploiting the Euclidean IFT.

2.2. Tensor scale for binary images

The improvements achieved by Miranda et al. algorithm
are important for computing tensor scale in gray-scale im-
ages. However, for binary images the tensor scale computa-
tion can be further improved.

The first simple change consists of the elimination of
the thresholds used for edge detecting. These thresholds
are not necessary, because the images have already been
segmented. Furthermore, the method can incorporate tech-
niques to easily find the edges in the directions of the
sample lines. Such techniques comprehend the use of Eu-
clidean Distance Transform, computed by the Image Forest-
ing Transform, that is described in the next subsection.

2.2.1. Euclidean Distance Transform via Image Forest-
ing Transform The Image Foresting Transform (IFT) is a
graph-based approach to the design of image processing op-
erators based on connectivity, in which the images are rep-
resented by graphs – the pixels are considered as nodes and



the arcs are defined by an adjacency relation between pix-
els. For a given seed set (roots), the seeds compete with each
other, defining influence zones. Each influence zone con-
sists of pixels that are “more closely connected” to a seed
than to any other, according to a path-cost function [10]. We
use a path-cost function that assigns the closest Euclidean
distance between object pixels and contour pixels to each
pixel inside the object (Euclidean IFT).

In the Euclidean IFT (Algorithm 1), the path-cost func-
tion is such that the cost of a path from a seed s to a pixel t
in the forest is the Euclidean distance between s and t. The
algorithm also needs an Euclidean relation A defined as

q ∈ A(p)⇒ (xq − xp)2 + (yq − yp)2 ≤ ρ2

where ρ is the adjacency radius and (xi, yi) are the coordi-
nates of a pixel i in the image.

Algorithm 1 assigns to each object pixel p three at-
tributes: the squared Euclidean distance C(p) between p
and its closest point s in the contour (forming an optimum
cost map), its closest seed R(p) = s (forming a root map),
and the label L(p) = L(s) of the segment that contains s
(forming a label map).

The advantages of computing the Euclidean Distance
Transform via IFT is that label propagation is executed on-
the-fly and in linear time. The Euclidean IFT is used for two
purposes in the proposed methods: faster tensor scale com-
putation, that is described in the next subsection, and tensor
scale orientation mapping (Section 3.1).

2.2.2. Tensor scale computation via Image Foresting
Transform A considerable speed up in the computation of
the tensor scale for binary images is possible by exploiting
the following aspect: if we have the shortest distance be-
tween a pixel p and the contour, there is no need to search
for edge points inside the circle with radius

√
C(p) (Fig-

ure 3(a)). For every pixel p, this distance can be obtained
from the cost attribute C(p) returned by Euclidean IFT.

According to Miranda’s algorithm, edge points are
searched along opposite sample lines, alternately. However,
in our approach, the algorithm jumps along the lines and
visits the pixels q and r at the same time (Figure 3(b)). The
searching for edge points continues outside the area defined
by the cost

√
C(p) in Figure 3(b), and the minimum be-

tween
√

C(r) and
√

C(q) indicates the location for the
next jump. These jumps may continue iteratively until the
closest edge point along the sample line is found.

In the example, the edge is found at the pixel R(r) (i.e.,
at the contour point r′ nearest to r). The algorithm defines
that the two edge points in this sample line are at r′ (coordi-
nate of R(r) relative to p) and at q′ (coordinate of the point
diametrically opposite to r′, relative to p), as shown in Fig-
ure 3(c).

Algorithm 1:
Input: A binary image I , a set S of contour points or seg-
ments in I (seeds), an Euclidean adjacency relation A, and
a labeling function λ(p) that assigns a label to each point
or segment p in S.
Output: The cost map C, the root map R, and the la-
bel map L.
Auxiliary data structure: A priority queue Q.

foreach p ∈ I do
C(p)← +∞;
R(p)← NIL; L(p)← NIL;

foreach p ∈ S do
C(p)← 0;
R(p)← p;
L(p)← λ(p);
insert p in Q;

while Q is not empty do
remove from Q a pixel p = (xp, yp) such that C(p)

is minimum;
foreach q = (xq, yq) such that q ∈ A(p) and

C(q) > C(p) do
C ′ ← (xq − xR(p))2 + (yq − yR(p))2, where

R(p) = (xR(p), yR(p)) is the root pixel of p;
if C ′ < C(q) then

if C(q) 6= +∞ then
remove q from Q;

C(q)← C ′;
R(q)← R(p);
L(q)← L(p);
insert q in Q;

By performing this procedure for all sample lines, the al-
gorithm defines all edge points and uses the same formula
defined by Miranda et al. (Equation 1) for finding the orien-
tation of the ellipse.

The localization of the edge points is formalized in Al-
gorithm 2.

3. Shape descriptors

The key idea of the proposed methods is to compute the
tensor scale ellipse for every object point and to map the ori-
entations onto the object’s contour. The tensor scale compu-
tation is done by the proposed method described in the pre-
vious section. The orientation mapping is described in the
next subsection.
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Figure 3. Example of optimization by using
Euclidean IFT.

3.1. Orientation mapping

The orientation mapping (Algorithm 3) consists in map-
ping the tensor scale ellipse orientation (computed for all
the object pixels) onto the object’s contour. Although the
tensor scale orientation mapping is different for each pro-
posed method, they both exploit the discrete Voronoi re-
gions (influence zones) of contour points inside the object.
The influence zones can be efficiently obtained by label
propagation using the Euclidean IFT [10].

It is necessary to compute the discrete Voronoi regions
inside the object and summarize, in some way, the orien-
tation information contained in each of these regions. The
introduced methods require two different types of orienta-
tion mapping: one that assigns information to each contour
point and one that assigns information to contour segments.
The former can be understood as an instance of the latter
with one-point length segments.

The orientation mapping (Algorithm 3) requires label
map L returned by the Euclidean IFT (Algorithm 1), us-
ing the segments as seeds and a labeling function that as-
signs a different label to each segment. Map L groups pix-
els and their ellipses in the influence zone of each segment.

The meta-function Summary(V [i]) returns a summa-
rization of ellipses information inside the correspondent in-
fluence zone. Each method has its own summary function
and they will be discussed in the next subsections.

Algorithm 2:
Input: A pixel p = (xp, yp), the number m of sam-
ple lines, and the cost map C returned by Algorithm 1.
Output: The vector edge that contains m pairs of edge
points localized at the sample lines.

for θ ← 0◦ to 179◦, with increments 180
m do

v ←
√

C(p);
p1 ← NIL;
p2 ← NIL;
q1 ← 0;
q2 ← 0;
while p1 6= 0 and p2 6= 0 do

x← v ∗ cos(θ);
y ← v ∗ sin(θ);
if q1 = 0

temp← (xp + x, yp + y);
p1 ←

√
C(temp);

if q2 = 0
temp← (xp − x, yp − y);
p2 ←

√
C(temp);

d← min(p1, p2);
v ← v + d;
q1 ← p1 − d;
q2 ← p2 − d;

edge[θ]← ((x, y), (x′, y′)), where (x′, y′) is the co-
ordinate of the point diametrically opposite to
(x, y), relative to p;

3.2. Tensor Scale Contour Saliences (TSCS)

The saliences of a shape are defined as the higher cur-
vature points along the shape contour [9], or vertex points
along the contour with first derivative discontinuity [6].
Their detection is the key to various applications in image
processing (e.g., image registration, polygonal approxima-
tion, motion analysis, and shape description [8]).

The TSCS method consists of three steps: the tensor
scale computation for all pixels inside a given object, fol-
lowed by the mapping of such tensor scale orientations onto
each contour point, as described in Algorithm 3, and finally
the detection of saliences based on the mapped orientations.
These saliences are used to form the feature vector of the
TSCS descriptor.

In this case, the Summary(V [i]) function of Algo-
rithm 3 returns the orientation of the ellipse with maximum
anisotropy inside the influence zone with label i:



Algorithm 3:
Input: A binary image containing an object O, the num-
ber ns of contour segments, the label map L returned by
the Euclidean IFT, and the vectors Ani and Ori that con-
tain the anisotropies and the orientations of the tensor scale
ellipses computed for all pixels of O, respectively.
Output: A vector M that contains the mapped orientations
for each contour segment.
Auxiliary data structure: A vector V of ns lists to store el-
lipse information in each influence zone of segment.
foreach pixel p ∈ O do

insert (Ani[p], Ori[p]) in list V [L(p)], where L(p) is the
label of the influence zone in which p is contained;

foreach i ∈ [1, . . . , ns] do

M [i] = Summary(V [i]);

Summary(V [i]) = argmax
p

Ani[p], (Ori[p], Ani[p]) ∈ V [i],

where the vectors Ani and Ori contain the anisotropies and
the orientations of the tensor scale ellipses computed for all
the object pixels.

Therefore, the vector M contains ns values, where ns is
the number of points in the object’s contour. Contour points
with no influence zone inside the object borrow the orienta-
tions of the neighbors.

In order to localize the salience points, the method calcu-
lates the differences between adjacent mapped orientations
in M . The difference value at p ∈M is

Difference(p) = AngularDist(M(p− 1),M(p + 1)),

where the function AngularDist(α, β) gives the smallest
angle between the orientations α and β.

Now, the method uses a threshold value to eliminate low
values of difference along the contour. Figure 4(a) shows
the adopted threshold and the difference values computed
for every contour point of the shape illustrate in Figure 4(b).
Figure 4(c) shows another example of the detected saliences
(dots) using threshold 16, i.e, saliences related to angle dif-
ferences lower than 16◦ were not represented.

After the salience detection phase, the descriptor is
formed by the feature extraction and metric functions used
in CS [8].

3.3. Tensor Scale Descriptor with Influence Zones
(TSDIZ)

The key idea of the Tensor Scale Descriptor with Influ-
ence zones (TSDIZ) is to map the tensor scale orientations

(a)

(b) (c)

Figure 4. Difference values along a contour
and detected saliences.

inside an object onto a few segments of its contour, and use
this information for shape description.

First, the TSDIZ approach computes tensor scale for all
pixels inside an object. Next, it divides the object’s contour
into segments and maps the tensor scale orientation onto
each contour segment, as described in Algorithm 3.

For TSDIZ, the Summary(V [i]) function returns the
weighted angular mean [13] of the ellipses orientations con-
tained in the influence zone with label i, considering the
anisotropies as the weights:

Summary(V [i]) = arctan (K) ,

K =

∑
(Ori[p],Ani[p])∈V [i]

Ani[p] ∗ sin(2Ori[p])

∑
(Ori[p],Ani[p])∈V [i]

Ani[p] ∗ cos(2Ori[p])
.

The vector M returned by Algorithm 3 is used as TS-
DIZ feature vector and contains ns values, where ns is the
number of contour segments.

The similarity function has to determine the rotation dif-
ference of the orientations between two TSDIZ vectors.
This function also has to determine the segment in which
the feature vectors must be lined up to obtain the best
matching between the underlying shapes.

The exhaustive algorithm (Algorithm 4) consists of the
registration between the orientation feature vectors. For this
purpose, the algorithm computes, for each rotation α, where
α = 0◦, . . . , 179◦, and for each shift j in the feature vec-
tor, where j = 1, . . . , ns and ns is the size of the vectors,



the difference between the vectors, after rotating all orienta-
tions of one vector by α and circular shifting the same vec-
tor by j. The minimum difference obtained corresponds to
the distance between the vectors.

Algorithm 4:
Input: Two feature vectors FA and FB .
Output: Distance dist between FA and FB .

dist←∞;

foreach j ∈ [1, . . . , ns] do
foreach α ∈ [0, . . . , 179] do

foreach i ∈ [1, . . . , ns] do
distaux ← AngularDistance({FB [(j −

i) mod ns] + α} mod 180, FA[i]);
if distaux < dist then

dist← distaux;

The complexity of this algorithm is O(c ∗ ns
2), where c

is a constant (in this case, 179◦). Although it is an exhaus-
tive search, small values of ns (e.g., ns < 70) makes it still
fast. Figure 5 illustrates the registration between two TS-
DIZ vectors. An orientation curve is computed for each ob-
ject and then, applying the matching algorithm, these curves
can be matched.

4. Experimental results

Experiments were conducted using two databases: Fish-
shape2 and MPEG-73 part B.

4.1. TSCS results

The experiments are based on comparisons between the
TSCS and the Contour Salience (CS) method [8], because
of its interesting previous results. But, before comparing
the different approaches, we need to find the best thresh-
old for our method. For this purpose, we constructed a
database consisting of 42 shapes of the Fish-shape database
and 112 shapes of the MPEG-7 Part B database, resulting in
2835 saliences. The images were chosen by taking into ac-
count the obviousness of the contour salience points loca-
tion. Then, a set of ground truth images were constructed
with the location of the salience points.

This experiment relies on counting the true positive
saliences (T+) and false positive saliences (F+) for the

2 http://www.ee.surrey.ac.uk/research/vssp/imagedb/demo.html
3 http://www.chiariglione.org/mpeg/

(a) (b)

(c) Orientation curve for (a).

(d) Orientation curve for (b).

(e) Curve matching.

Figure 5. Examples of TSDIZ curves and reg-
istration.

ground truth images. After this counting, three effective-
ness measures were calculated: recall, precision, and accu-
racy. Recall (Rec) and precision (Prec) are computed as

Rec =
T+

T+ + T−

and
Prec =

T+

T+ + F+

where T− is the number of true negatives, and (T+ + T−)
represents the total number of points. The accuracy (Acc) is
calculated as



Measures 10 12 14 16 18
Recall 0.964 0.964 0.963 0.963 0.962

Precision 0.889 0.923 0.946 0.963 0.968
Accuracy 0.840 0.862 0.874 0.875 0.867

Table 1. Effectiveness measures.

Acc =
T+ + T−

T+ + T− + F+ + F−

where F− (false negatives) represents the number of miss-
detections.

The results with different threshold values (from 10 to
18) are presented in Table 1. Note that the method is ro-
bust to the choice of the threshold. However, the accuracy
was maximized with threshold value 16 and this is the value
adopted for this method in further experiments.

The first consideration made between the approaches
was related to performance issues. Our method was twice
faster (speedup of 2.04), on average, than the CS approach,
when executed for the entire Fish database (on an AMD 64
3000+ with 1GB of memory).

The second consideration is that our method is com-
puted locally, looking for each mapped orientation and for
its neighbors along the contour. The CS method is more
global, because it uses the internal and external skeletons
of the whole shape for salience detection. This difference
in granularity also makes the detection of saliences less
robust in the CS approach, because the multiscale skele-
tons have to be thresholded to obtain salience points. This
threshold represents a smoothing of the contour and, conse-
quently, loss of some important saliences. In order to detect
these saliences, we would have to reduce the threshold. Our
method is also dependent of a threshold, but it is much eas-
ier to fix a single threshold for the entire database, which is
the case of our approach, than to find the best threshold for
every single image in the database, which is the case of the
CS approach.

The last consideration is about the impact of a better
salience estimation in shape description. Corners and high
curvature points concentrate more information than other
points of the shape [5]. For this reason, it is intuitive to con-
ceive that curvature is an important key for the identifica-
tion of many geometric aspects. Based on this, we use the
saliences as key points for shape description.

We compared the descriptors using the multiscale sepa-
rability (MS separability) effectiveness measure. Separabil-
ity indicates the discriminatory ability between objects that
belong to distinct classes [8]. The TSCS and CS descriptors
were computed for Fish-shape database and the MS sep-
arability curves for the descriptors are shown in Figure 6.
Higher is the curve, better is the method.

Figure 6. Multiscale separability curve for
Fish database.

By analyzing Figure 6, we observe that TSCS is more ef-
fective or equal to CS in 80% of the search radii.

4.2. TSDIZ experiments

In [8], Torres et al. showed that MS separability repre-
sents better than precision vs. recall (PR) curves the separa-
tion among clusters (groups of relevant images) in the fea-
ture space. However, PR is still the most popular effective-
ness measure in CBIR. For this reason, we present the re-
sults with both measures.

Precision is defined as the fraction of retrieved images
that are relevant to the query. In contrast, recall measures
the proportion of relevant images among the retrieved im-
ages. The Precision vs. Recall curve, or PR curve, indicates
the commitment between the two measures and, generally,
the highest curve in the graph indicates better effectiveness.

In this experiment, TSDIZ is compared with the follow-
ing shape descriptors: Beam Angle Statistics [4] (BAS),
Multiscale Fractal Dimension [9] (MS Fractal), Moment
Invariants [12] (MI), Fourier Descriptor [11] (Fourier),
Tensor Scale Descriptor [14] (TSD), and Segment
Saliences [8] (SS).

Figure 7(a) presents the PR curves for the evaluated de-
scriptors and TSDIZ with 60 contour segments. We have
tested different number of segments (30 to 120) and the
method is quite robust to this choice.

TSDIZ descriptor has the second better PR curve among
the tested descriptors. As TSDIZ has outperformed all other
descriptors for MS separability as well, we show in Fig-
ure 7(b) the MS separability curves of TSDIZ and BAS
only.

TSDIZ and BAS present equivalent effectiveness for
search radii less than 10% of their maximum distance. From
this point on, the BAS separability curve decreases quickly,



(a) PR curve.

(b) MS separability.

Figure 7. TSDIZ experiments.

indicating that this descriptor is neither robust nor effective
for search radii greater than 20%.

Table 2 shows a visual CBIR example for a query image.
The images that are not in the same class of the query image
and should not be returned by the query are shown with a
border around them.

5. Conclusions

This paper describes a faster algorithm for tensor scale
computation in binary images using Image Foresting Trans-
form (IFT), and two shape descriptors based on tensor scale.

For the TSCS descriptor, the experimental results
showed that it is faster and more robust than the CS descrip-
tor. The experiments for TSDIZ indicate that this descriptor
has better PR curve than all relevant shape descriptors (ex-
cept BAS) and the best separability among them, making it
the most robust and effective according to this metric.
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Rank TSDIZ BAS
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Table 2. Visual CBIR example.
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