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Abstract

Super-Resolution reconstruction methods intend to re-
construct a high-resolution image from a set of low-
resolution observations. For that, the observed images must
have sub-pixel displacements between each other. This re-
quirement allows the existence of different information
on each of the low-resolution images. This paper dis-
cusses a Bayesian approach for the super-resolution re-
construction problem using Markov Random Fields (MRF)
and the Potts-Strauss model for the image characteriza-
tion. Since it is difficult to maximize the joint probabil-
ity, the Iterated Conditional Modes (ICM) algorithm is
used to maximize the local conditional probabilities se-
quentially. For the oversmoothness inherent to Maximum
a Posteriori (MAP) formulations using MRF prior mod-
els, we adopt a discontinuity adaptive (DA) procedure
for the ICM algorithm. The proposed method was evalu-
ated in a simulated situation by the Peak signal-to-noise
ratio (PSNR) method and the Universal Image Quality In-
dex (UIQI). Also, video frames with sub-pixel displace-
ments were used for the visual evaluation. The results
indicate the effectiveness of our approach both by numeri-
cal and visual evaluation.

1. Introduction

High-resolution images are usually necessary in a great
number of applications: medical imaging; image surveil-
lance methods; digital television picture technology; and
high-precision classification in remote-sensing, just to name
a few.1 This kind of images can be acquired using high-
resolution acquisition devices. However, there are several

1 This paper contains excerpts from the M.Sc. thesis named “Uso do
Algoritmo ICM Adaptativo a Descontinuidades para o Aumento da
Resoluç̃ao de Imagens Digitais por Técnicas de Reconstrução por Su-
per Resoluç̃ao” by the first author. This research project was finan-
cially supported by CAPES.

cost and hardware limitations. For instance, the size of each
detector of a charged-couple device (CCD) camera cannot
be made arbitrarily small because of the shot noise effect
[17]. Also, in positron emission tomography (PET) technol-
ogy, besides the problem with the detector size, spatial res-
olution is limited by several factors such as patient motion
and positron range of the isotope of interest [13]. Thus, it is
of great interest to reconstruct a high resolution image us-
ing signal processing techniques. The super-resolution im-
age reconstruction approach uses a set of low-resolution
observations of the same scene to reconstruct an image in
a high-resolution grid. For that, the low-resolution obser-
vations must have sub-pixel displacements between each
other. This characteristic allows the existence of different
information on each of the low-resolution images and the
exceeding information can be used to increase the spatial
resolution of the image. According to Park et al. [17], im-
ages with this characteristic can be aquired in many ways:
from a single camera with several captures; from multiple
cameras located in different positions; by scene motions or
local objects movements; by vibrating imaging systems.

Tsai and Huang [20] were the first to address the prob-
lem of reconstructing a high-resolution image from a set
of low-resolution observations of the same scene. They
used a frequency domain approach based on the shifting
property of the Fourier transform to model global trans-
lational scene motion. More recently, several algorithms
were proposed to solve the same problem, most of them
in a spatial domain context. In fact, despite the simplicity
of frequency domain approaches, there are several disad-
vantages on this formulation [2]. For instance, it does not
usually permit more general motion models. Spatial do-
main approaches allow arbitrary motion models, complex
degradation models and, mainly, the inclusion ofa pri-
ori constraints. Note that super-resolution reconstruction is
considered an ill-posed problem. Thus, regularized solu-
tions usinga priori constraints are usually required. Sev-
eral methods that follow this idea were proposed, including
the following: projection onto convex sets (POCS) based



approaches [19][24][22]; deterministic regularized methods
[10][9][3]; and probabilistic reconstruction techniquesim-
posing the prior probability density functions (MAP recon-
struction methods) [18][8]. A remarkable point is that MAP
formulations using MRF prior models are considered the
most flexible and realistic approaches. Even under limited
prior information, these formulations allow the imposition
of usual images characteristics using just neighborhood re-
lationships [2].

In the super-resolution context, there are usually only
low-resolution noisy observations. Therefore, a common
constraint to be imposed is smoothness. In a MAP-MRF
approach, this constraint is expressed as the prior probabil-
ity of the high-resolution image, which is uniquely deter-
mined by its local conditional probabilities [1]. Besides,in
MRFs, only neighboring pixels have direct interation. Thus,
the smoothness constraint can be imposed just by consider-
ing that in a neighborhood the pixel values do not change
abruptly. However, despite this facility, the maximization
of the joint probability usually demand high computational
power. Besides, the global optimization is difficult to be
computed exactly and an approximation has to be used [15].
In this context, the ICM algorithm is an interesting alter-
native. It is a deterministic algorithm proposed by Besag
[1], which maximizes the local conditional probabilities se-
quentially. A remarkable point about this algorithm is the
very fast convergence rate. It is important to note that im-
age models based on a MAP-MRF formulation usually im-
plies uniform smoothness of the image. This oversmooth-
ness do not respect discontinuities, where abrupt changes
occur. Therefore, we adopt a DA procedure for the ICM al-
gorithm. In this way, when a discontinuity is detected, the
degree of interaction is adjusted not to smooth the area.

This work presents a coherent image formation model
and a MAP-MRF approach for super-resolution image re-
construction using the DA ICM algorithm. We discuss the
use of the Potts-Strauss model for thea priori probability
density function of the high-resolution image.

The PSNR method and the UIQI were used for the nu-
merical evaluation of the proposed approach in a simulated
situation. Besides, video frames with sub-pixel displace-
ments were used for the visual evaluation. The results in-
dicate the considerable effectiveness of our approach. Sec-
tion 2 discusses some super-resolution approaches. Section
3 briefly reviews some MRF concepts and the Potts-Strauss
model. Section 4 presents the proposed method. Section 5
shows some results obtained in the simulation and in the
real situation. Finally, Section 6 presents some discussions
about the proposed method.

2. Super Resolution Reconstruction

The super-resolution image reconstruction methodology
uses a set of low-resolution observations of the same scene
to reconstruct a high-resolution image. It has proved to be
useful in many practical situations in which high resolution
images are required. In fact, super-resolution methods use
signal processing techniques to obtain the high-resolution
image. Thus, it overcomes the resolution limitation inher-
ent to acquisition devices.

Each pair of low-resolution observations must present
sub-pixel displacements between them. This requirement
guarantees that each low-resolution image contains addi-
tional information that can be used to increase spatial res-
olution. If these displacements were multiples of the low-
resolution pixel size, images would contain redundant in-
formation. Figure 1 illustrates two low-resolution grids with
integer displacements between each other. Note that both
images contain the same information. Images presenting
sub-pixel displacements can be acquired from a single cam-
era with several captures; from multiple cameras located in
different positions; by scene motion or local object move-
ments; by vibrating imaging systems; using video frames.

Figure 1. Integer displacements between two
low-resolution grids.

According to Borman and Stevenson [2], the super-
resolution methodololy emerged from image interpolation
methods applied for single frame resolution enhancement.
As illustrated in Figure 2, more general problems have
evolved from the actual methodology: spatial resolution
enhancement of video sequences; temporal resolution en-
hancement of video sequences; and spatial-temporal reso-
lution enhancement of video sequences. In this work we fo-
cus on the problem of reconstructing a high-resolution im-
age, based on a set of low-resolution observations.



Figure 2. The hierarchy of the spatial
and temporal resolution enhancement tech-
niques [2].

Figure 3 illustrates the process of increasing the spa-
tial resolution based on the observations. Note that to in-
crease resolution, first of all it is necessary to identify the
sub-pixel displacements among the low-resolution images.
Image registration methods intend to map points in one im-
age to the corresponding points in another image [4]. In this
way, these images can be aligned with one another so that
differences can be detected. Several sub-pixel image reg-
istration methods were proposed in the literature. For in-
stance, Irani and Peleg [11] proposed a sub-pixel image
registration and resolution enhancement method based on
the back-projection procedure used in tomography; Xing
et al. [23] proposed a multi-sensor and multi-resolution re-
mote sensing image sub-pixel registration scheme; Guizar-
Sicairos et al. [6] proposed a sub-pixel displacement esti-
mation procedure based on the upsampled cross correlation
of the reference image and each of the other observations.

Several algorithms were proposed in the last years for
super-resolution image reconstruction [2][17]. In general,

Figure 3. Spatial resolution increased based
on three low-resolution grids with sub-pixel
displacements.

they can be classified into two main classes: spatial and fre-
quency domain approaches. Despite the simplicity of fre-
quency domain approaches, they usually do not permit more
general motion models. Spatial domain methods are able to
work with more general observation models. Besides, they
allow the inclusion ofa priori constraints. In fact, there are
usually only degraded observations and, besides increasing
spatial resolution, super-resolution methods intend to re-
construct a high-quality digital image. In this sense, simi-
lar to restoration problems, super-resolution reconstruction
is considered an ill-posed problem. Thus, some kind of reg-
ularization usinga priori constraints is usually required.

POCS based approaches [19][24][22] impose prior
knowledge by convex sets. This is a computational ap-
proach based on the theory that iterative projections onto
convex sets converge to the intersection of all sets. In
this way, given an initial estimation, the solution will re-
spect all of the constraints represented by the sets. Despite
the simplicity and flexibility of this approach, if the inter-
section of the sets is not a single point, there will be more
than one solution. Thus, the result depends on the initial es-
timation. Besides, this approach demands high computa-
tional power. On the other hand, deterministc regulariza-
tion methods use desired information about the solution to
stabilize the inversion of the problem [10][9][3]. Smooth-
ness is the most common constraint imposed. It assumes
that, in general, images present limited high-frequency ac-
tivity. However, in many cases, other priors would pre-
serve high-frequency information in a better way. In this
way, this approach models the prior information in an un-
favorable way. It only includes a regularization term in the
optimization function.

Probabilistic reconstruction techniques usually includes
prior knowledge in a more natural way. The Bayesian MAP
estimation is the most promissing method. This approach
uses the prior probability density function of the image to
impose constraints to the solution. In this context, MRFs
prior models are considered the most flexible and realistic
because they allow the inclusion of images characteristics
using only neighborhood relations.

3. Markov Random Fields

MAP formulations using MRF prior models are con-
sidered the most flexible and realistic approaches in the
super-resolution context [2]. The MRF theory is based on
contextual dependencies of physical phenomena. LetF =
{F1, F2, . . . Fm} be a set of random variables defined on
a regular latticeS, and eachFi takes a valuefi ∈ L.
(F1 = f1, F2 = f2, . . . , Fm = fm) denotes the joint event
that eachFi takes the valuefi, i = 1, . . . ,m. In this way,F
is called a random field andf = {f1, f2, . . . , fm} is a real-
ization of the field.



The sites inS are related by a neighborhood systemη,
defined by

η = {ηi|∀i ∈ S} , (1)

whereηi is the set ofis neighbors. This neighborhood has
the following properties:

1. i /∈ ηi;

2. i ∈ ηi′ ⇐⇒ i′ ∈ ηi.

In the first order neighborhood system, every site has
four neighbors. On the other hand, in the second order
neighborhood system, every site has eight neighbors. Con-
sidering the sitea, Figure 4 illustrates these neighborhood
systems together with higher order systems indicated by the
numbers in the third figure.

Figure 4. Neighborhood systems on a regular
lattice.

A clique c is defined as a subset of sites inS that are
neighbors to one another. Thus, it can consist of a single site
c = i, a pair of sitesc = i, i′, a triple of sitesc = i, i′, i′′,
and so on.

The collection of all cliques in a MRF is

C = C1 ∪ C2 ∪ C3 . . . (2)

where
C1 = {i|i ∈ S}

C2 = {i, i′|i′ ∈ ηi, i ∈ S}

C3 = {i, i′, i′′′|i, i′, i′ ∈ S are neighbors to one another}
and so on. In this way, considering the first order neighbor-
hood system, the possible cliques are the first three cliques
presented in Figure 5. The second order neighborhood sys-
tem presents all the cliques showed in Figure 5.

For a discrete label setL, P (f) denotes the joint proba-
bility of the realizationf . F is called a MRF onS with re-
spect to the neighborhood systemη, if and only if

1. P (f) > 0, ∀f = {f1, f2, . . . , fm}, fi ∈ L;

2. P
(

fi|fS−{i}

)

= P (fi|fηi
),

Figure 5. Cliques on a regular lattice.

whereS − {i} is the set of sites inS without i andfS−{i}

is the set of labels of the sites inS − {i}.
The second property is calledMarkovianity. It depicts

that in MRFs, only neighboring labels have direct interac-
tions. In this way, a MRF is uniquely determined by its lo-
cal conditional probabilities.

3.1. The MRF-Gibbs Equivalence

A random fieldF is said a Gibbs random field (GRF) on
S according toη, if it is characterized by the Gibbs distri-
bution

P (f) = Z−1e−
1

T
U(f) (3)

where
Z =

∑

f

e−
1

T
U(f). (4)

Z is called partition function, and the energy functionU (f)
is given by

U (f) =
∑

c∈C

Vc (f) , (5)

whereVc (f) are the clique potentials that characterize the
interaction between neighbors.

The Hammersley-Clifford theorem established the
MRF-Gibbs equivalence [7]. It stated thatF is a MRF on
S according to a neighborhood systemη if and only if F is
a GRF onS according toη. This theorem provides a sim-
ple way of specifying the joint probability.

3.2. The Potts-Strauss Model

In general, since the Hammersley-Clifford theorem, the
Gibbs distribution is adopted for the image characteriza-
tion in MAP-MRF approaches. However, the maximization
of the joint probability usually demand high computational
power and the global optimization is difficult to be com-
puted exactly. The Potts-Strauss model can be defined by
the set of all the local conditional distributionsp (fi|fηi

),
which are defined as

p(fi|fηi
) ∼ eβ♯{t∈ηs:fs=ft}∀s ∈ S. (6)

The parameterβ is often referred to as the attraction or re-
pulsion parameter whether it is positive or negative, respec-
tively [16]. We believe the estimation process could be op-



timizated by this model together with the maximization of
the local conditional probabilities sequentially.

4. The Proposed Method

In a typical MAP reconstruction context, first of all it is
necessary to formulate the image formation model that re-
lates the desired high-resolution image to the low-resolution
observations and thea priori distribution to be adopted.
Also, for the sub-pixel displacements estimation, we must
define how image registration will be applied.

4.1. Image Formation Model

Considerf [i, j], 0 ≤ i, j ≤ M , the ideal undegraded
image sampled above the Nyquist rate from the continu-
ous scene of interestf : ℜ2 → ℜ. Following a lexico-
graphic ordering off [i, j], an undersampled versiond[k, l],
0 ≤ k, l ≤ N,N ≤ M , can be modeled by

d = Df, (7)

whereD[u, v], 0 ≤ u ≤ N2 and0 ≤ v ≤ M2, is the down-
sampling operator. In this sense, a low-resolution pixel is
modeled as a weighted sum of the high-resolution pixels,
in which the weights are given by the elements of opera-
tor D. Note that, according to the position of the acquisi-
tion sensors, this operator can be responsible for the pres-
ence of sub-pixel displacements among the low-resolution
observations. As illustrated in Figure 6, the second low res-
olution grid is displaced from the previous grid by a frac-
tion of the low-resolution pixel dimension in both horizon-
tal and vertical directions.

Figure 6. Sub-pixel displacements caused by
the downsampling operator.

In a realistic situation, the digital image is usu-
ally blurred by the optical system during acquisition and
also corrupted by noise. The blurring operator is often con-
sidered a linear space-invariant operatorH, which elements
are given by samples of the optical system point spread fun-
tion (PSF). Thus, the blurred low-resolution imageb is

given byb = Hd andH is aN2 × N2 block-circulant ma-
trix. In this sense, a low resolution degraded version of the
high-resolution imagef , can be modeled by

g = HDf + n, (8)

wheren is additive noise.

4.2. Image Registration

The proposed method uses an initial high-resolution esti-
mation to perform super-resolution reconstruction. This es-
timation can be derived according to the sub-pixel displace-
ments between the low-resolution observations. Note that,
in the alignment of the low resolution images with the high-
resolution grid, several low-resolution pixels lay over one
high-resolution pixel. Figure 7 illustrates the superposition
of two low-resolution pixels over a fixed high-resolution
pixel. Thus, in an intuitive way, each high-resolution pixel
can be modeled as a composition of the low-resolution pix-
els influencing it. In this context, we implement the high-
resolution pixel as a weighted sum of each low-resolution
pixel that lay over it. The weights are defined according
to the position of the high-resolution pixel under the low-
resolution one.

Figure 7. Low resolution pixels that lay over
a fixed high-resolution pixel.

Figure 8 illustrates six of sixteen simulated im-
ages formed undersampling the a high-resolution image
by four in each direction, each time starting from a dif-
ferent pixel within the first 4x4 block [19]. In this way,
the low-resolution simulated images present sub-pixel dis-
placements between each other. Figure 9 shows a 256x256
image used for this purpose (a); one of the 64x64 low-
resolution simulated images (b); the high-resolution im-
age reconstructed modeling each high-resolution pixel as a
weighted sum of the low-resolution pixels that lay over it
(c); and the bilinear interpolation of the low-resolution im-
age (d).

For the sub-pixel displacements estimation, all observed
images are compared with a reference imageg0(x, y). The
displacementsx0 andy0 are estimated by minimizing the



Figure 8. Six low-resolution simulated grids.

Figure 9. High-resolution image used to sim-
ulate sixteen low-resolution observations (a);
first simulated image (b); reconstructed im-
age (c); and bilinear interpolation of the low-
resolution image (d).

similarity function

s(x0, y0) =
∑

x∈X

∑

y∈Y

[g0(x, y) − g1(x − x0, y − y0)]
2
,

(9)
where X and Y are finite sets of points.

Expandingg1(x, y) to the first term of its Taylor series,
it is easy to show thatx∗

0 andy∗
0 that minimize Equation (9)

are given by

x∗
0 =

∑

x

∑

y[(g0 − g1)(x, y) − y∗
0g1y(x, y)]g1x(x, y)

∑

x

∑

y g2
1x(x, y)

(10)

and

y∗
0 =

∑

x

∑

y[(g0 − g1)(x, y) − x∗
0g1x(x, y)]g1y(x, y)

∑

x

∑

y g2
1y(x, y)

(11)
where g1x(x, y) and g1y(x, y) are the first deriva-
tives of g1(x, y) in relation to x and y, respectively.
This method only considers a set of globally translated
and low-resolution observations. However, this assump-
tion has been proved not to be so restrictive since we are
considering very slight displacements between the im-
ages [11].

4.3. Bayesian Formulation for Super-Resolution

It is well known that high-resolution image reconstruc-
tion is an ill-posed problem. Thus, some kind of regulariza-
tion is required to reach a good approximation of the orig-
inal scene. In fact, a high-resolution estimation,f̂ , must be
reconstructed considering a set of low-resolution observa-
tionsgk, k = 1, . . . , q, each of them modeled by Equation
(8). A Bayesian formulation usually provides a flexible and
realistic way of imposinga priori constraints to the estima-
tion. In this sense, the prior information is expressed as the
prior probability of the high-resolution image and the MAP
solution decides for the estimation that maximizes the con-
ditional probability density off given all the observations,

f̂ = arg maxf {p (f |g)} , (12)

whereg is composed by all of the low-resolution observa-
tionsgk, k = 1, 2, . . . , q.

4.4. The Discontinuity Adaptive Approach

MAP-MRF formulations usually imply a uniform
smoothness of the image. According to Li [14], since Ge-
man and Geman [5] introduced theline fields idea, the
application of the smoothness constraint while preserv-
ing discontinuities has been an active research issue in the
image processing context. Discontinuity adaptive meth-
ods control the interaction between neighbors in such a
way that the degree of interaction is adjusted when a dis-
continuity is detected.

The discontinuity detection is performed by an adaptive
interactive function (AIF). Letk be the difference between
a pixel and each of its neighbors. According to the value
of this difference, the AIF has to distinguish noise from the
presence of a discontinuity. For that, this function is con-
vex in the interval[−B,B], increasing monotonically with
k to smooth out the noise. Outside this interval, the func-
tion is non-convex, decreasing ask increases and becoming
zero ask → ∞ [14].



We adopt an AIF parameterized byγ given by

Aγ(x) = γ − γ

1 + x2

γ

, (13)

which is convex in the intervalBγ =
(

−
√

γ
3 ,

√

γ
3

)

. Figure
10 shows the qualitative shape of the adopted AIF function.

Figure 10. AIF adopted to the discontinuities
detection.

4.5. The Discontinuity Adaptive ICM Algorithm

The Iterated Conditional Modes algorithm was proposed
by Besag [1] as a computationally feasible alternative for
the MAP estimation. It uses agreedystrategy to maximize
the local probabilities sequentially. The method is based on
the local posterior distribution

p(fi|g, fηi
) ∼ p(gi|fi).p(fi|fηi

), (14)

given the observationsg and the current values in the neigh-
borhoodηi. As discussed in Section 3.2, the Potts-Strauss
model is adopted as the prior distributionp(fi|fηi

).
We assume that the conditional probability density func-

tion p(gi|fi) is given by

p(gi|fi) =
1

σ
√

2π
.e−

(gi−mi)
2

2σ2 , (15)

where gi is the weighted sum of the low-resolution
pixels that lay over the high-resolution pixel,

mi = 1
C

(

∑

j∈ηi
fj

)

+ 1
C

fi andC = ♯ηi + 1.

In each iteration, the ICM algorithm updatesfi by the
value that maximizesp(gi|fi).p(fi|fηi

), for eachi ∈ S.
In our DA formulation, first of all, the AIFsAγ(i), for all
i ∈ S, are calculated. Then,p(gi|fi).p(fi|fηi

) is maximized
considering only the valuesi′ ∈ ηi whichAγ(i′) is close to
Aγ(i).

In this context, the DA ICM algorithm is given by:

1. Choose an initial high-resolution estimation;

2. Fori from 1 to M2, updatefi by one of the valuesi′ ∈
ηi that maximizes

p(gi|fi)p(fi|f̂ηi
)

andAγ(i′) is close toAγ(i).

3. Repeat item (2)τiter times.

τiter is the maximum number of iterations.
We used the image reconstructed using the low-

resolution observations as discussed in Section 4.2, as the
initial high-resolution estimation.

5. Results

Peak signal-to-noise ratio (PSNR) method and the Uni-
versal Image Quality Index (UIQI) were used for the nu-
merical evaluation of the proposed approach in a simulated
situation. Besides, in a real situation, video frames with sub-
pixel displacements were used for the visual evaluation.

5.1. Simulation Description

The proposed method was evaluated in a simulated sit-
uation where sixteen low-resolution images were generated
according to the image formation model discussed on Sec-
tion 4.1. The image adopted as the high-resoluton image to
be reconstructed was undersampled as discussed on Sec-
tion 4.2. In this way, the simulated observations present
sub-pixel displacements between each other. Then, the im-
ages were convolved with a 3x3 uniform rectangular ker-
nel to simulate the blur due to the image process acquisition
and corrupted by additive and independent Gaussian noise
at 30 dB. Figure 11 shows the 512x512 high-resolution im-
age used (a) and the reference 128x128 low-resolution ob-
servation (b).

Figure 12 shows the high-resolution registered image as
discussed on Section 4.2 (a); the bilinear interpolation ofthe
reference low-resolution image (b); the high-resolution es-
timation reconstructed using the proposed method without
the DA procedure (c); and the result using the DA constraint
(d). As one can see, the registration procedure is able to give
better results when compared with the interpolated image.
Although in this simulation we have knowledge of the ac-
tual displacements between each low-resolution image and
the reference image, we have estimated the displacement
values. We note that the proposed method for sub-pixel reg-
istration has demonstrated to be very accurate in all con-
ducted experiments.

In the simulations, the algorithm was initialized with the
registered image in Figure 12 and theβ parameter in Equa-
tion (6) was found following the procedure proposed in [12]
for the second order neighborhood system. Also, in this ex-
periment we do not take into account the blur from the op-
tical system in the restoration process. From the presented



Figure 11. High-resolution image used in the
simulation (a) and one of the low-resolution
images (b).

results, we can see that the algorithm was able to improve
the quality of the initial high-resolution estimation. We also
note that in most of the experiments, the algorithm had fast
convergence rate, where 5 or 6 iterations were suficient to
produce good results.

The oversmoothness inherent to the MAP-MRF formula-
tion can be identified by uniform areas in the image. Figure
13 shows a zoom of the image reconstructed without impos-
ing the DA constraint (a) and the image reconstructed with
the DA procedure (b). Note that the DA approach avoids the
formation of uniform areas in the image, preserving the de-
tails.

We used the Universal Image Quality Index proposed by
Wang and Bovik [21] for the numerical evaluation. This in-
dex is given by

Q =
4σfq f̄ q̄

(

σ2
f + σ2

q

)

[

(f̄)2 + (q̄)2
]

, (16)

whereq is the image to be compared with the original im-
agef and

f̄ =
1

M

M
∑

i=1

fi , q̄ =
1

M

M
∑

i=1

qi, (17)

σ2
f =

1

M − 1

M
∑

i=1

(fi − f̄)2 , (18)

σ2
q =

1

M − 1

M
∑

i=1

(qi − q̄)2 , (19)

Figure 12. Registered image used in the
simulation (a); Bilinear interpolation of the
reference low-resolution image (b); high-
resolution estimation reconstructed without
the DA procedure (c); and the result using DA
constraint (d).

σfq =
1

M − 1

M
∑

i=1

(fi − f̄)(qi − q̄). (20)

Q assumes values in the interval[−1, 1]. We believe this
quality index is more appropriate to the super-resolution
context since it models any distortion as a combination of
three different factors: loss of correlation, luminance distor-
tion, and contrast distortion.

Irani and Peleg’s method [11], which presented the most
important results in the super-resolution context, is usedfor
comparison purpose. Since the proposed method does not
include the deblurring process, the quality index was cal-
culated using the blurred image as the original one. Table
1 shows the resulting quality indices. Indeed, the values
shown are in agreement with a visual evaluation of the im-
ages. The proposed algorithm with the DA procedure pre-
sented a very similar evaluation compared with Irani and
Pelegs method.

We also used the normalized mean squared error



Figure 13. Zoom of the image reconstructed
without the imposition of the DA constraint
(a) and the image reconstructed with the DA
procedure (b).

(NMSE), given by

NMSE =
‖f − q‖2

‖f‖2 =

∑M
i=1(fi − qi)

2

∑M
i=1 f2

i

(21)

to evaluate the same images. Table 1 shows that the results
were very similar to the evaluation by the UIQI.

UIQI NMSE
Registered Image 0.9660 0.1439
ICM 0.9331 0.1709
DA ICM 0.9875 0.0577
Bilinear interpolation 0.9668 0.1445
Irani-Peleg 0.9897 0.0209

Table 1. UIQI and NMSE using the blurred im-
age.

5.2. Case Study

In a real situation, we used video frames with sub-pixel
displacements between each other to visual evaluate the
proposed method. Figure 14 shows four 128x128 video
frames. Considering the upsampling/downsampling factor
2, Figure 15 shows the 256x256 reconstructed image.

6. Concluding Remarks

We have presented an eficient algorithm for super-
resolution image reconstruction based on a Markov ran-
dom field where we used a DA procedure with the Iterated

Figure 14. Frames of a video, containing sub-
pixel displacements between each other.

Figure 15. High-resolution reconstructed im-
age.

Conditional Modes algorithm for computing the maxi-
mum a posteriori conditional probability. Indeed, the re-
sults demonstrate that the algorithm can be extremely effi-
cient in a super-resolution reconstruction framework where
the method has demonstrated good performance both in vi-
sual accuracy and computational cost. We also note that,
although we do not address the image debluring proce-
dure in this work, it can be easily incorporated into the
proposed algorithm. In future works, we intend to make ad-
ditional experiments in order to verify the accuracy of the
proposed method when compared with the Irani-Peleg al-
gorithm and also considering different levels for the sig-
nal to noise ratio in the observations. We also intend to test
the algorithm with other models for thea priori probabil-
ity density function of the actual image.
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