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Arnaldo de A. Araújo and Gisele L. Pappa
Universidade Federal de Minas Gerais

Departamento de Ciência da Computação
31.270-010, Belo Horizonte-MG, Brazil
{arnaldo,glpappa}@dcc.ufmg.br

Laurent Najman
Université Paris-Est
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Abstract

This work proposes two methodologies for fast im-
age contrast enhancement based on histogram equal-
ization (HE), one for gray-level images, and other for
color images. For gray-level images, we propose a tech-
nique called Multi-HE, which decomposes the input im-
age into several sub-images, and then applies the classical
HE process to each one of them. In order to decom-
pose the input image, we propose two different discrepancy
functions, conceiving two new methods. Experimental re-
sults show that both methods are better in preserving
the brightness and producing more natural looking im-
ages than other HE methods. For color images, we
introduce a generic fast hue-preserving histogram equal-
ization method based on the RGB color space, and
two instantiations of the proposed generic method, us-
ing 1D and 2D histograms. HE is performed using shift
hue-preserving transformations, avoiding the appear-
ance of unrealistic colors. Experimental results show that
the value of the image contrast produced by our meth-
ods is in average 50% greater than the value of contrast
in the original image, still keeping the quality of the out-
put images close to the original.

1. Introduction

Nowadays digital cameras are certainly the most used
devices to capture images. They are everywhere, includ-
ing mobile phones, personal digital assistants (PDAs -
a.k.a. pocket computers or palmtop computers), robots, and
surveillance and home security systems. There is no doubt

that the quality of the images obtained by digital cameras,
regardless of the context in which they are used, has im-
proved a lot since digital cameras early days. Part of these
improvements are due to the higher processing capabil-
ity of the systems they are built-in and memory availabil-
ity. However, there are still a variety of problems which
need to be tackled regarding the quality of the images ob-
tained, including: 1) contrast defects; 2) chromatic aber-
rations; 3) various sources of noises; 4) vignetting; 5)
geometrical distortions; 6) color demosaicing; and 7) fo-
cus defects.

Among the seven problems related above, some are more
dependent on the quality of the capture devices used (like 2-
7), whereas others are related to the conditions in which the
image was captured (such as 1). When working on the lat-
ter, the time required to correct the problem on contrast is
a big issue. This is because the methods developed to cor-
rect these problems can be applied to an image on a mobile
phone with very low processing capability, or on a power-
ful computer.

Moreover, in real-time applications, the efficiency of
such methods is usually favored over the quality of the
images obtained. A fast method generating images with
medium enhancement on image contrast is worth more than
a slow method with outstanding enhancement.

With this in mind, this work1 proposes two methodolo-
gies for contrast enhancement in digital imaging using his-
togram equalization (HE)2. Although there has been a lot of

1 This paper comes from the doctoral thesis of David Menotti [10], sub-
mitted to the Department of Computer Science, Universidade Federal
de Minas Gerais, in April 2008.

2 In this work, the contrast is defined as the standard variation of the im-
age gray-levels or luminance.



research in the image enhancement area for 40 years [5, 10],
there is still a lot of room for improvement concerning the
quality of the enhanced image obtained and the time neces-
sary to obtain it.

HE is a histogram specification process [3] which con-
sists of generating an output image with a uniform his-
togram (i.e., uniform distribution). In image processing, the
idea of equalizing a histogram is to stretch and/or redis-
tribute the original histogram using the entire range of dis-
crete levels of the image, in a way that an enhancement of
image contrast is achieved. HE is a technique commonly
used for image contrast enhancement, since it is computa-
tionally fast and simple to implement. Our main motivation
is to preserve the best features the HE methods have, and in-
troduce some modifications which will overcome the draw-
backs associated with them.

In the case of gray-level image contrast enhancement,
methods based on HE have been the most used. Despite
its success for image contrast enhancement, this technique
has a well-known drawback: it does not preserve the bright-
ness3 of the input image on the output one. This problem
makes the use of classical HE techniques [5] not suitable for
image contrast enhancement on consumer electronic prod-
ucts, such as video surveillance, where preserving the in-
put brightness is essential to avoid the generation of non-
existing artifacts in the output image [14, 10].

In order to overcome this problem, variations of the clas-
sic HE technique, such as [6, 22, 2, 1], have proposed to
first decompose the input image into two sub-images, and
then perform HE independently in each sub-image (Bi-HE).
These works mathematically show that dividing the image
into two rises the expectance of preserving the brightness.
Although Bi-HE successfully performs image contrast en-
hancement and also preserves the input brightness to some
extend, it might generate images which do not look as natu-
ral as the input ones. Unnatural images are unacceptable for
use in consumer electronics products [14, 10].

Hence, in order to enhance contrast, preserve brightness
and produce natural looking images, we propose a generic
Multi-HE (MHE) method that first decomposes the input
image into several sub-images, and then applies the classi-
cal HE process to each of them. We present two discrep-
ancy functions to decompose the image, conceiving two
variants of that generic MHE method for image contrast
enhancement, i.e., Minimum Within-Class Variance MHE
(MWCVMHE) and Minimum Middle Level Squared Er-
ror MHE (MMLSEMHE). Moreover, a cost function, which
takes into account both the discrepancy between the input
and enhanced images and the number of decomposed sub-
images, is used to automatically determine in how many

3 In this work, the brightness is defined as the mean of the image gray-
levels

sub-images the input image will be decomposed on.
Regarding color image contrast enhancement, the

classical methods are also based on HE. The exten-
sion of HE methods to color images is not straightforward,
because there are some particular properties of color im-
ages that need to be properly taken into account during im-
age contrast enhancement. These properties include the lu-
minance (L) (or intensity (I)), saturation (S), and hue (H)
attributes of the color.

The luminance represents the achromatic part of the
color (e.g., it can be defined as a weighted function of the
R (red), G (green), and B (blue) color channels), whereas
the saturation and hue refer to the chromatic part of the im-
age. The saturation can be seen as measure of how much
white is present in the color, and the hue is the attribute of
the color which decides its “real color”, e.g., red or green.
For the purpose of enhancing a color image, the hue should
not be changed for any pixel, avoiding output images with
unnatural aspect.

Color spaces such as HSV, HSI, CIELUV, and CIELAB
were conceived based on these three attributes. However,
color images in digital devices, such as mobile phones, cam-
eras, and PDAs, are commonly transmitted, displayed, and
stored in the RGB color space (i.e., R-red, G-green, and B-
blue). This color space is not the most appropriated one for
image processing tasks, since the meaning of the attribute
colors is not explicitly separated as it would be in other
color spaces. The conversion from the RGB color space
to a Luminance-Hue-Saturation (LHS)-based color space
is trivial, but can be both not suitable for real-time appli-
cations and the digital devices referred above. Moreover,
working on a LHS-based color space requires tackling the
well-known gamut problem [16].

The literature of HE methods for color image con-
trast enhancement presents works based on the RGB,
LHS, CIELUV, and other color spaces. Neither meth-
ods based on the RGB color space nor methods based
on other color spaces present all the characteristics re-
quired for use in portable devices: to be fast, improve
the images contrast and still preserve the hue. Meth-
ods based on the RGB space do not preserve the hue, while
methods based on other color spaces are slower due to con-
versions required among color spaces and may also be not
hue-preserving. In order to achieve all these three require-
ments, this work presents a generic fast hue-preserving
HE method based on the RGB color space for image con-
trast enhancement.

From the generic method we create two variants, which
are characterized by the histograms dimension they use, i.e.,
1D or 2D. The equalization is performed by hue-preserving
transformations directly in the RGB color space, avoiding
the gamut problem, keeping the hue unchanged, and the re-
quirement of conversion between color spaces. Moreover,



our methods improve the image contrast (i.e., improve the
variance on the luminance attribute) and, simultaneously,
the saturation is modified according to the equalization of
the RGB histogram. The methods estimate the RGB 3D his-
togram to be equalized through R, G, and B 1D histograms
and RG, RB, and GB 2D histograms, respectively, yield-
ing algorithms with time and space complexities linear with
respect to the image dimension. These characteristics make
these methods suitable for real-time applications.

The remainder of this work is organized as follows. Sec-
tion 2 present the Multi-HE methods for gray-level images,
whilst Section 3 introduces our fast hue-preserving HE for
color images. Section 4 shows some experimental results,
and finally conclusions are pointed out in Section 5.

2. Multi-Histogram Equalization Methods
for Contrast Enhancement and Bright-
ness Preserving

As mentioned before, the classic HE method enhances
the contrast of an image but cannot preserve its brightness
(which is shifted to the middle gray-level value). As a result,
it can generate unnatural and non-existing objects in the
processed image. In contrast, Bi-HE methods [6, 22, 2, 1]
can produce a significant image contrast enhancement and,
to some extend, preserve the brightness of the image. How-
ever, the generated images might not have a natural appear-
ance [14, Figure 1]. To surmount such drawbacks, the main
idea of our proposed methods is to decompose the image
into several sub-images, such that the image contrast en-
hancement provided by the HE in each sub-image is less in-
tense, leading the output image to have a more natural look.
The conception of this method arises two questions.

The first question is how to decompose the input image.
As HE is the focus of the work, the image decomposition
process is based on the histogram of the image. The his-
togram is divided into classes determined by threshold lev-
els, where each histogram class represents a sub-image. The
decomposition process can be seen as an image segmen-
tation process executed through multi-thresholding selec-
tion [7]. The second question is in how many sub-images
an image should be be decomposed on. This number is di-
rectly related to how the input image is decomposed.

In order to answer these questions, Section 2.1 presents
two functions to decompose an image based on thresh-
old levels, whereas the algorithm used to find the optimal
threshold levels is presented in Section 2.2. Finally, a cri-
terion for automatically select the number of decomposed
sub-images is exposed in Section 2.3.

Note that the methods described in this section are pub-
lished in [14].

2.1. Multi-Histogram Decomposition

Many HE-based methods have been proposed in the lit-
erature to decompose an image into sub-images by using
the value of some statistical measure based on the image
gray-level [6, 22, 2, 1]. These methods aim to optimize the
entropy or preserve the brightness of the image. Here, we
will focus our attention on decomposing an image such that
the enhanced images still have a natural appearance. For
such aim, we propose to cluster the histogram of the image
into classes, where each class corresponds to a sub-image.
By doing that, we want to minimize the brightness shift
yielded by HE process into each sub-image. By minimiz-
ing this shift, we expect to preserve both the brightness and
the natural appearance of the processed image.

From the multi-threshold selection literature point of
view, the problem stated above can be seen as the mini-
mization of the within-histogram class variance (the well-
know Otsu method [18]), where the within-class variance
is the total squared error of each histogram class with re-
spect to its mean value (i.e., the brightness). That is, the
decomposition aim is to find the optimal threshold set
T k = {tk1 , ..., tkk−1} that minimizes the decomposition er-
ror of the histogram of the image into k histogram classes,
and decomposes the image I[0, L − 1] into k sub-images
I[l1,k

s , l1,k
f ], ..., I[lk,k

s , lk,k
f ]. lj,ks and lj,kf are the lower and

upper gray-level boundaries of each sub-image j when the
image is decomposed into k sub-images, and are defined
as: lj,ks = tkj−1, if j > 1, and lj,ks = 0 otherwise, and
lj,kf = tkj +1, if j 6= k, and lj,kf = L−1 otherwise. The dis-
crepancy function for decomposing the original image into
k sub-images following the minimization of within-class
variance can be expressed as

Disc(k) =
k∑

j=1

lj,k
f∑

l=lj,k
s

(l − lm(I[lj,ks , lj,kf ]))2P I[0,L−1]
l .

(1)
The method conceived with this discrepancy func-
tion will be called Minimum Within-Class Variance MHE
method (MWCVMHE). Note that the mean gray-level
(i.e., the brightness) of each sub-image processed by the
CHE method is theoretically shifted to the middle gray-
level of its range, i.e., lm(O[ls, lf ]) = lmm(I[ls, lf ]) =
lmm(O[ls, lf ]) = (ls + lf )/2. As we want to mini-
mize the brightness shift of each processed sub-image
such that the global processed image has its contrast en-
hanced and its brightness preserved (creating a natu-
ral looking output image), we focus our attention on the
brightness of the output image. Hence, instead of us-
ing the mean lm(I[ls, lf ]) of each sub-image I[ls, lf ]
in the discrepancy function, we propose to use its mid-
dle level (ls + lf )/2, since every enhanced sub-image



O[ls, lf ] will theoretically have its mean value (bright-
ness) on the middle level of the image range - thanks to the
specification of a uniform histogram distribution. There-
fore, a new discrepancy function is proposed and it is
expressed as

Disc(k) =
k∑

j=1

lj,k
f∑

l=lj,k
s

(l − lmm(I[lj,ks , lj,kf ]))2P I[0,L−1]
l ,

(2)
where lmm(I[lj,ks , lj,kf ]) stands for the middle value of the
image I[lj,ks , lj,kf ] and it is defined as ||(ls + lf )/2||. The
method conceived with this discrepancy function will be
called Minimum Middle Level Squared Error MHE method
(MMLSEMHE).

2.2. Finding the Optimal Thresholds

The task of finding the optimal k − 1 threshold leves
which segment an image into k classes can be easily per-
formed by a dynamic programming algorithm with O(kL2)
time complexity [7]. Algorithm 1 shows the pseudocode of
this algorithm, where ϕ(p, q) stands for the “discrepancy
contribution” of the sub-image I[p, q], i.e.,

ϕ(p, q) =
q∑

l=p

(l − γ)2P I[0,L−1]
l , (3)

where γ stands for lm(I[p, q]) or lmm(I[p, q]), depending
on the discrepancy function used (see Equations 1 and 2).

Once Algorithm 1 is run, the optimal threshold vector
T k can be obtained through a back-searching procedure on
PT , i.e.,

tkj = PT (j + 1, tk∗j+1), (4)

where 1 ≤ j < k, tk∗j+1 = L − 1 if j + 1 = k, and tk∗j+1 =
tkj+1 otherwise.

2.3. Automatic Thresholding Criterium

This section presents an approach to automatically
choose in how many sub-images the original image should
be decomposed on. This decision is a key point of our
work, which has three main aims: 1) contrast enhance-
ment; 2) brightness preserving; 3) natural appearance.
Nonetheless, these goals cannot be all maximize si-
multaneously. We take into account that as the number
of sub-images in which the original image is decom-
posed increases, the chance of preserving the image bright-
ness and natural appearance also increases. However, the
chances of enhancing the image contrast decrease. To de-
cide in how many sub-images the original image should be
decomposed on, a tradeoff between brightness, natural ap-
pearance and contrast should be considered. Hence, we

Algorithm 1: Computing Disc(k) and PT (k, L− 1)
Data: ϕ(p, q) - discrepancy of sub-image I[p, q]
Result: D(p)q - discrepancy function Disc(p) up to

level q
Result: PT - optimum thresholds matrix
for q ← 0 ; q < L ; q + + do D(1)q ← ϕ(0, q) ;1

for p ← 1 ; p ≤ k ; p + + do2

D(p + 1)p ← D(p)p−1 + ϕ(p− 1, p− 1) ;3

PT (p + 1, p) ← p− 1 ;4

for q ← p + 1 ; q ≤ L− k + p ; q + + do5

D(p + 1)q ← −∞ ;6

for l ← p− 1 ; l ≤ q − 1 ; l + + do7

if (D(p + 1)q > D(p)l + ϕ(l + 1, q)) then8

D(p + 1)q ← D(p)l + ϕ(l + 1, q) ;9

PT (p + 1, q) ← l ;10

propose to use a cost function, initially used in [23], to au-
tomatically select the number of decomposed sub-images.
This cost function takes into account both the discrep-
ancy between the original and processed images (which
is our own aim decomposition function) and the num-
ber of sub-images to which the original image is decom-
posed, and it is given as

C(k) = ρ(Disc(k))1/2 + (log2 (k))2, (5)

where ρ is a positive weighting constant. The number of de-
composed sub-images k is automatically given as the one
which minimizes the cost function C(k). It is shown in [23]
that the cost function presented in Equation 5 has a unique
minimum. Hence, instead of finding the value k which min-
imizes C(k) throughout k values range, it is enough to
search for k from 0 up to the point C(k) starts to increase.

3. Fast Hue-Preserving Histogram Equaliza-
tion Methods for Color Image Contrast En-
hancement

This section presents a generic method that, in con-
trast with the classical method presented in [5] (frow now
on C1DHE method) and the one in [20] (from now on
TV3DHE method), is both hue-preserving and has time
and space complexities which complies with real-world
and real-time applications. We propose two variants of this
generic method, which are characterized by the histogram
dimensions used to estimate the 3D probability functions,
i.e., 1D or 2D histograms.



3.1. Generic Hue-preserving Histogram Equaliza-
tion Method

Our generic hue-preserving HE method is divided in
three phases. Let I and O be the input and output images,
respectively. Let the input #D histograms and probability
functions be defined as in [15, Section 2] and [10, Sec-
tion 4.1] (omitted due to space constraints), where # is the
histogram dimension used (the variant point of our method).
The first phase of our method consists of computing the #D
histograms of I . Although the proposed method works with
#D histograms and probability functions, we do not equal-
ize the #D histograms per say, but a 3D pseudo-histogram,
H ′IRGB

. Indeed, the equalization of H ′IRGB

is based on a
pseudo 3D cumulative density function, built through prob-
ability density functions.

The computation of this cumulative density function,
C ′I

RGB

, which constitutes the second phase of our method,
is performed as the product of the three #D cumulative
functions. We show in details the variant methods in Sec-
tions 3.2 and 3.3.

The third phase works as follows. Let HORGB

be the
uniform histogram of the output image, where any entry
(Ro, Go, Bo) has the same amount of pixels, since such out-
put histogram is desired, i.e.,

HORGB

Ro,Go,Bo
=

1
L3

(mn), (6)

or any entry (Ro, Go, Bo) in PORGB

has the same density,
i.e.,

PORGB

Ro,Go,Bo
= 1/L3. (7)

Hence, any entry (Ro, Go, Bo) in CORGB

is directly
computed using PORGB

, i.e.,

CORGB

Ro,Go,Bo
= (Ro + 1)(Go + 1)(Bo + 1)/L3. (8)

To yield the output enhanced image, for every input pixel
(x, y) ∈ X , where (Ri, Gi, Bi) = IRGB(x, y), we obtain
the smallest (Ro, Go, Bo) = ORGB(x, y) for which the in-
equality

|C ′I
RGB

Ri,Gi,Bi
− CORGB

Ro,Go,Bo
| ≥ 0, (9)

holds.
However, this step of calculating the output pixel value

presents an ambiguity, mainly because there are many pos-
sible solutions for (Ro, Go, Bo) which satisfy Equation 9.
This ambiguity is remedied as follows. Unlike the method
described in [20] (TV3DHE method), which iteratively in-
creased or decreased the values of Ro, Go, and Bo in or-
der to minimize Equation 9, we propose to find the output
triplet (Ro, Go, Bo) for any image pixel in a single step, i.e.,
O(1). Thus, from Equations 8 and 9, we have

C ′I
RGB

Ri,Gi,Bi
− (Ro + 1)(Go + 1)(Bo + 1)

L3
= 0. (10)

If we take Ro, Go, and Bo as Ri + k, Gi + k, and Bi +
k, respectively, where k is the number of iterations required
for minimizing Equation 9, we obtain

k3+
k2[R

′
i + G

′
i + B

′
i ]+

k[R
′
i ×G

′
i + R

′
i ×B

′
i + G

′
i ×B

′
i ]+

R
′
i ×G

′
i ×B

′
i − L3 × C ′I

RGB

Ri,Gi,Bi
= 0.

(11)

where R
′
i, G

′
i, and B

′
i mean Ri + 1, Gi + 1, and Bi + 1,

respectively. By solving this cubic equation in function of
k, we obtain the desired output triplet (Ro, Go, Bo) as the
input one plus the displacement k, i.e., (Ri + 〈k〉 , Gi +
〈k〉 , Bi + 〈k〉), where 〈k〉 stands for the nearest integer to
k ∈ R.

Equation 11 can be easily solved by [17] or by the clas-
sical Cardan’s methods which use transcendental functions.
As the former method is faster and mathematically simpler
than the latter, we chose to use it.

Observe that any image pixel is enhanced following a
shift transformation by a k factor, i.e., from (Ri, Gi, Bi) to
(Ro, Go, Bo) = (Ri +k,Gi +k, Bi +k), which makes our
generic method hue-preserving [16].

Having described this generic method, the next sub-
sections show our variant methods, which differ only on
the histogram dimension used. By respecting the chronol-
ogy’s conception of our methods, the method based on RG,
RB, and GB 2D histograms [12] (from now on HP2DHE
method), is described first in Section 3.2. Then, the method
based on 1D histograms [13] (from now on HP1DHE
method) is presented in Section 3.3.

3.2. Hue-preserving 2D Histogram Equalization

In this section, we present our HP2DHE method, ini-
tially introduced in [12]. It uses 2D histograms (as defined
in [15, Section 2] and [10, Section 4.1]) and is based on the
joint probability distribution functions of channels two-at-
a-time to perform HE. The cumulative probability density
function (or the probability distribution function), C ′I

RGB

,
is computed as the product of the three 2D cumulative func-
tions for any entry (Ri, Gi, Bi), i.e.,

C ′I
RGB

Ri,Gi,Bi
= CIRG

Ri,Gi
CIRB

Ri,Bi
CIGB

Gi,Bi
. (12)

For details on how to directly calculate CIRG

, CIRB

,
and CIGB

through the probability density function P IRG

,
P IRB

, and P IGB

see [15, Section 2] or [10, Section 4.1].
The main rationale for computing this pseudo-cumulative
density function as the product of three 2D cumulative den-
sity functions is that the three channels in an image are usu-
ally not simultaneously correlated.



Image HE BBHE DSIHE MMBEBHE BPHEME RMSHE MWCVMHE MMLSEMHE
arctichare 8.11 16.63 13.09 23.55 22.95 30.74 31.44 40.27
bottle 12.88 18.68 17.53 28.44 25.72 29.68 35.99 36.71
copter 10.61 15.95 14.20 25.50 23.20 25.62 33.83 34.77
couple 7.57 13.18 11.61 19.86 38.54 19.65 30.59 40.16
Einstein 15.08 15.15 15.58 18.91 16.21 19.51 31.42 34.53
F16 11.92 20.69 16.02 20.32 21.61 22.72 24.43 37.10
girl 13.03 13.30 12.99 14.03 13.19 28.00 29.39 33.03
hands 4.36 19.58 17.76 19.99 17.18 30.93 24.49 35.82
house 10.82 14.27 14.07 21.41 19.93 21.36 31.81 36.37
jet 9.51 22.50 14.37 30.78 23.99 27.85 29.14 31.74
U2 6.99 15.06 10.94 19.87 27.32 22.12 26.21 31.08
woman 17.83 17.73 18.25 21.60 19.23 23.67 28.83 34.53

Table 1. PSNR = 10× log10 (L− 1)2/MSE

Note that, in [13], we proposed to solve Equation 9 itera-
tively, as done in [20], by using a non hue-preserving trans-
formation. Here, we modify the method originally proposed
in [13] to use the hue-preserving shift transformation and
the solution of Equation 9 described in the previous subsec-
tion. These two modifications make the HP2DHE method
presented here hue-preserving, and reduces its time com-
plexity from O(max(mnL,L2)) to O(max(mn,L2)).

3.3. Hue-preserving 1D Histogram Equalization

In this section, we present a hue-preserving HE method
based on the RGB color space for image contrast enhance-
ment, which uses 1D histograms, and is also a variant of
the generic method described in Section 3.1. The method is
based on the independence assumption of color channels,
which is used for computing the cumulative density func-
tion.

We use 1D histograms to estimate a 3D probability dis-
tribution function (or a cumulative density function), and
then equalize the conceived histogram through the esti-
mated function. Hence, the function CIRGB

is estimated
for any entry (Ri, Gi, Bi) as the product of every proba-
bility distribution function CIR

Ri
, CIG

Gi
, and CIB

Bi
, following

the rule, i.e.,

C ′I
RGB

Ri,Gi,Bi
= CIR

Ri
CIG

Gi
CIB

Bi
. (13)

For details on how to directly calculate CIR

, CIG

, and
CIB

through P IR

, P IG

, and P IB

see [15, Section 2] or [10,
Section 4.1]. Note that, in Equation 13, C ′I

RGB

is defined
with a correct dimensional meaning, i.e., C ′I

RGB

, a 3D
cumulative function, is computed as the product of three
1D cumulative functions, while in Equation 12 C ′I

RGB

is
defined with a wrong dimensional meaning, i.e., C ′I

RGB

is computed as the product of three 2D cumulative func-
tions. Nevertheless, the images processed by the HP2DHE
method produce similar results to the HP1DHE method, as
the experiments reported in Section 4.

As we use 1D histograms, this method has a
smaller time complexity than the HP2DHE method,
i.e., O(max(mn,L)), and the space complexity is lin-
ear, i.e., O(L). Moreover, the time and space complex-
ities of HP1DHE are exactly the same of the C1DHE
method, which are the best to our knowledge.

A complete description of the methods presented in this
section can be found in [15, 10].

4. Experiments

In this section, we report experiments performed to com-
pare and evaluate the methods proposed in Sections 2 and 3.
Section 4.1 presents the experiments involving methods
proposed for handling gray-level images, and Section 4.2
analyzes and discusses the experimental results concerning
the methods proposed for handling color images.

4.1. Experiments with Gray-level Images

In this section, we report results of experiments com-
paring our proposed methods with other HE methods (HE,
BBHE, DSIHE, MMBEBHE, and RMSHE (r = 2)) and the
method proposed in [21]. The input images used in the ex-
periments were the ones previously used in [6, 22, 2, 1, 21].
They are named as they were in the works where they first
appeared: arctic hare, bottle, copter, couple, Einstein, F16,
girl, hands, house, jet, U2, woman (girl in [21]). Images
were extracted from the CVG-UGR database [4] and pro-
vided by the authors of [2, 1].

Besides an analyzes of brightness (the mean) and con-
trast (the standard deviation) values of the original and out-



Figure 1. From left to right: the Einstein original, enhanced RMSHE (r = 2), MWCVMHE (k = 6), and
MMLSEMHE (k = 7) images.

put images, in order to assess the appropriateness of the pro-
cessed images for consumer electronics products, for each
image, we compute the PSNR measure [19]. In image pro-
cessing literature, the PSNR has been used as a standard
measure to evaluate and compare compression and segmen-
tation algorithms [19]. It is well-known that a processed
image with good quality (with respect to the original one)
presents PSNR values within 30 db and 40 db [19].

Due to space constraints, the analysis of brightness and
contrast of the original and the output images obtained by
the HE methods was omitted and it is presented in [14, 10].
The values of PSNR obtained for each image are pre-
sented in Table 1. This table is divided into three parts: 1)
The names of original images; 2) The data values obtained
by the Uni- and Bi-HE methods, i.e., HE, BBHE, DSIHE,
MMBEBHE, and BPHEME; 3) The values obtained by the
MHE methods, i.e., RMSHE (r = 2), and our proposed
MWCVMHE and MMLSEMHE.

For each image in Table 1, we highlight the best data val-
ues in the second and third parts of the table in either dark or
light gray. We then compare these best values in the second
and third parts of the table against each other (i.e., Uni- and
Bi-HE methods against MHE methods). The best value is
dark-grayed, the worst light-grayed. Recall that the greater
the value of the PSNR, the better it is.

Analyzing the data presented in Table 1, we observe that
the images processed by the MMLSEMHE method pro-
duces the best PSNR values, as they are within the range
[30 db, 40 db]. Hence, we can argue that the MMLSEMHE
method performs image contrast enhancement and bright-
ness preserving while still producing images with a natural
looking. Moreover, this result corroborates, in practice, our
hypothesis that the MMLSEMHE method, using the dis-
crepancy function in Equation 2, yields images with the best
PSNR values among all HE methods.

Besides this PSNR analysis, we also perform an image
visual assessment. Remark that all the 12 input images, their
histograms, their respective enhanced images and equalized

histograms (obtained by all the method listed in Table 1),
adding up more than 200 images, can be seen in [9]. Here,
we show the images obtained by the image Einstein.

Figure 1 shows the Einstein image and the resulting im-
ages obtained by the MHE methods, i.e., RMSHE (with
r = 2), MWCVMHE, and MMLSEMHE. By observing the
processed images, it is noticeable that our proposed meth-
ods are the only ones among the MHE methods that can
produce natural looking images.

After analyzing the data presented in Table 1 and vi-
sually observing the processed images, we can conclude
that the MMLSEMHE method produces images with better
quality than the other methods with respect to the PSNR
measure. By further analyses made in [14, 10], we can
also conclude that: 1) A better image contrast enhance-
ment can be obtained by the MWCVMHE method, which
also presents satisfactory brightness preserving and natu-
ral looking images; 2) The RMSHE method (r = 2) should
be employed if even more contrast enhancement than of-
fered by the the MMLSEMHE and MWCVMHE methods
is desired. However, in this case, the processed image may
present some annoying and unnatural artifacts (for instance
Figure 1-RMSHE (r = 2)).

4.2. Experiments with Color Images

The majority of image enhancement methods found in
the literature, including our previous works [12, 13], as-
sesses the contrast improvement of the output image by
visually comparing it to the original one. In [12, 13], we
claimed that it is difficult to judge a processed enhanced im-
age using a subjective assessment. Hence, in this work, we
use two types of quantitative measures to assess the orig-
inal and processed images produced by the C1DHE and
TV3DHE method and ours (presented in Section 3), and
then perform an objective comparison among them.

The first quantitative measure used is a color image qual-
ity measure (CIQM) [24], defined by the image color nat-



Method L∗ LRGB Q CNI CCI
Original 12.53 ± 3.98 31.13 ± 9.90 0.68 ± 0.02 0.81 ± 0.03 0.80 ± 0.12
C1DHE 18.38 ± 3.78 47.11 ± 9.76 0.68 ± 0.01 0.78 ± 0.03 1.03 ± 0.13
HP1DHE 18.14 ± 3.71 46.73 ± 9.61 0.66 ± 0.02 0.78 ± 0.04 0.78 ± 0.07
HP2DHE 18.55 ± 3.91 47.02 ± 10.01 0.67 ± 0.02 0.78 ± 0.04 0.91 ± 0.10
TV3DHE 13.30 ± 2.89 36.44 ± 7.72 0.58 ± 0.02 0.72 ± 0.02 0.49 ± 0.05

Table 2. Contrast for the images in the CIELUV and RGB color spaces and Color Image Quality
Measures

uralness and colorfulness indexes, and applied to verify if
the HE methods preserve the quality of the images. The sec-
ond measure refers to the contrast in the CIELUV and in
the RGB color spaces, and aims to show how much the HE
methods improve the contrast of the original image.

This section presents and discusses the numerical re-
sults obtained by using the CIQMs and the contrast mea-
sure above mentioned and detailed described in [15, Sec-
tion 5.1] and [10, Section 5.2.2.1] to evaluate our proposed
methods (HP1DHE and HP2DHE) and the others (C1DHE
and TV3DHE) in a data set of 300 images taken from the
University of Berkeley [8].

We compute, for both the original and the processed im-
ages, the contrast in both the CIELUV and RGB color
spaces and the CIQMs, as showed in Table 2. Table 2 is di-
vided in three parts. In the first part, we present the image
source name, i.e., the original or the methods that originated
the image. In the second and third parts, we show the val-
ues obtained for the contrast and CIQMs, respectively. Note
that the values in the table are presented in the form µ± σ,
i.e., the mean and standard deviation of the measures com-
puted on the data set of 300 images. All images used in this
experiment can be seen in [11].

From the second part of Table 2, we observe that the im-
ages processed by our methods, i.e., HP1DHE and
HP2DHE, have the value of contrast increased, in av-
erage, about 50% in both the CIELUV and RGB
color spaces. The values of the contrast of images pro-
cessed by the C1DHE method also increase in a simi-
lar fashion. In contrast, the TV3DHE method is the one
that increases the less the contrast. Remark that, in gen-
eral, the improvement of the value of contrast in the
CIELUV color space is proportional to the one in
the RGB space (the range of the CIELUV lumi-
nance is [0, 100] and the RGB luminance is [0, 255] (with
L = 256)). From this first analysis, we state that our meth-
ods and the C1DHE are effective in yielding significant
increasing in the value of image contrast.

In the third part of Table 2, we find the Q, CNI , and
CCI measures for the original and processed images. Note
that the third numerical column in this table reports the Q
measure values, which are a weighting function of the CNI
and CCI measures. We observe that, in average, the im-

ages processed by our methods have preserved values of
Q in the processed images close to the value in the origi-
nal ones. This means that our methods produce images with
quality similar to the original images. Also note that the im-
ages enhanced by the C1DHE method have obtained sim-
ilar Q values to the ones obtained by our methods. In con-
trast, the images produced by the TV3DHE method have Q
values quite smaller than the ones calculated from the orig-
inal images. This shows that the TV3DHE method yields
images with deteriorated color quality.

On the fourth numerical column of Table 2, we have the
values for the CNI measure. Observe that, in average, our
methods and the C1DHE keep the naturalness of the pro-
duced images close to the one in the original image, whereas
the images produced by the TV3DHE method have CNI
values significatively smaller than the ones obtained from
the original images.

On the fifth numerical column of Table 2, we report the
values for the CCI measure. Observe that the CCI mea-
sure is based on the mean and standard deviation of the sat-
uration of the image in the CIELUV color space. The re-
sults reported show that, in average, the C1DHE method
is the one that more frequently increases the value of the
CCI measure from the original to the processed images.
The C1DHE method achieves such result because it equal-
izes the three R, G, and B 1D histograms freely and sep-
arately. On the other hand, it has the well-known draw-
back of not being hue-preserving, which will be discussed
and illustrated further in this section. The images produced
by the TV3DHE method, in average, do not preserve both
the CNI and CCI values and, consequently the Q value,
close to the values of the original images. The fact that
the TV3DHE method produces images with CCI values
quite different from the ones in the original images corrob-
orates the hypothesis subjectively stated in [12] and [13]
that the TV3DHE method produces overenhanced / under-
satured images (i.e., brighter images). That is, in general the
saturation values of the images produced by the TV3DHE
method are smaller than the saturation values of the images
produced by the other methods, and so are their variances.

From the analysis regarding the contrast and the CIQMs,
we claim that: 1) The contrast of the images processed by
our methods is in average 50% greater than the contrast of



(a) (b) (c) (d) (e)

Figure 2. Results for the landscape image: (a) original image; (b) C1DHE; (c) TV3DHE; (d) our
HP1DHE; (e) our HP2DHE.

Method Color Quality Contrast
Q CNI CCI CIELUV RGB

Original 0.7038 0.8540 0.7196 7.00 17.03
C1DHE 0.7681 0.9292 0.8089 12.09 30.32
HP1DHE 0.7210 0.8725 0.7575 11.50 28.98
HP2DHE 0.6504 0.7688 0.8381 11.00 27.59
TV3DHE 0.7140 0.9004 0.4392 8.76 23.68

Table 3. Color Image Quality and Contrast
Measures for the Images in Figure 2.

the original images, whilst the color quality, measured by
the naturalness and colorfulness indexes, of the processed
images are close to the ones of the original image; 2) The
TV3DHE method is the one that show the smaller improve-
ment on the contrast of the original image. Moreover, it pro-
duces images overenhanced, deteriorating the color quality
of the images; 3) The results achieved for contrast enhance-
ment and color quality preservation by the C1DHE method
are as good as our methods.

Note that we could perform changes in the TV3DHE
method in order to make it faster and hue-preserving, by
applying our shift hue-preserving transform. Nonetheless,
even after these modifications, the images enhanced by the
TV3DHE method would continue to be overenhanced and
the contrast improvement would not be significant.

Despite the good results that our numerical analysis at-
tributed to the C1DHE method, and the fact that it is six
times faster than our methods, the C1DHE is not suitable
for real-world applications: the images produced by this
method do not preserve the hue of the original image. As
a result, the images produced by the C1DHE method may
have unnatural colors, even though the CNI , CCI , and,
consequently, Q, indicate that the images produced by the
C1DHE method have image color quality close to the ones
of the original images. These contradictory results show
that the CQIMs used in this work have a drawback. They
can quantitatively represent the color quality of a image
by means of the naturalness and colorfulness indexes, but
they do not take into account simultaneously the original
and processed images in such assessment.

In order to exemplify the conclusions reached, we will
careful analyze one example of an image extracted from the
300 presented in the data base, named “landscape”. Table 3
shows the contrast and the CNI , CCI , and Q values for
the original and processed landscape images in Figure 2.
Figure 2(b) shows the landscape image processed by the
C1DHE method, and highlights the fact that it is not hue-
preserving. We observe that the colors present in the image
in Figure 2(b) look unnatural with respect to the original im-
age in Figure 2(a), even though the CNI , CCI , and Q val-
ues of the processed image are close to the ones in the orig-
inal image. We can also observe that the image produced
by the TV3DHE method in Figure 2(c) is overenhanced,
i.e., the colors are undersaturated, as explained before in this
section. Moreover, we can see that the increase in the value
of the image contrast produced by the TV3DHE method is
the smallest among the compared methods, as shown in Ta-
ble 3.

Finally, the claims about our methods are verified in the
images in Figures 2(d) and 2(e) and confirmed in Table 3.
As observed, the images have their contrast value increased
by, in average, 50%, while their color quality measures are
kept close to the ones of the original image. Besides, our
methods are hue-preserving.

5. Conclusions

In the first part of this work, we proposed and tested
a new framework called the MHE for image contrast en-
hancement and brightness preserving which generated nat-
ural looking images. The experimental results showed that
our methods are better at preserving the brightness of the
processed image (in relation to the original one) and yield
images with natural appearance, at the cost of contrast en-
hancement. The contributions of this part of the work are
threefold: 1) An objective comparison among all the HE
methods using quantitative measures such as the PSNR,
brightness, and contrast (the comparison of these last two
measures can be seen in [14, 10]); 2) An analysis show-
ing the boundaries of the HE technique and its variations
(i.e., Bi- and Multi-HE methods), for contrast enhancement,



brightness preserving and natural appearance; 3) Our pro-
posed methods.

In the second part of this work, we presented two fast
hue-preserving HE methods based on 1D and 2D his-
tograms of the RGB color space for image contrast en-
hancement. The HP1DHE and HP2DHE methods have
time and space complexities that comply with real-time ap-
plication requirements. Although the C1DHE method is six
times faster than ours, it is not hue preserving. We eval-
uated the resulting images objectively by using measures
of contrast, naturalness and colorfulness [24] on a data set
composed of 300 images, such that a quantitative compar-
ison could be performed. The experimental results showed
that the value of the contrast of the images produced by our
methods is in average 50% greater than the original value.
Simultaneously, our methods keep the quality of the image
in terms of naturalness and colorfulness close to the qual-
ity of the original image. In practice, our methods enhance
512× 512 image pixels in 100 milliseconds on a Pentium 4
- 2GHz.

Recall that both proposed methodologies are suitable for
real-time and real-world applications.
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