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Abstract 

Direct volume rendering techniques allow 
visualization of volume data without extracting 
intermediate geometry. The mapping from voxel 
attributes to optical properties is performed by transfer 
functions which, consequently, play a crucial role in 
building informative images from the data. One-
dimensional transfer functions, which are based only 
on a scalar value per voxel, often do not provide 
proper visualizations. On the other hand, multi-
dimensional transfer functions can perform more 
sophisticated data classification, based on vectorial 
voxel signatures. The transfer function design is a non-
trivial and unintuitive task, especially in the multi-
dimensional case, and its controlled modification 
allows the user to selectively enhance different 
structures in the volume. In this paper we discuss the 
interactive approach of a transfer function design 
technique that allows the user to explore volumetric 
datasets by interacting with a derived space as well as 
with voxels in the volume space.  

1. Introduction 

In direct volume rendering (DVR), transfer 
functions (TFs) are used for emphasizing regions of 
interest inside the volumes. The most common type of 
transfer function is the one-dimensional TF, which 
assigns optical properties (usually color and opacity) to 
voxels based only on their scalar value. 
Notwithstanding, one-dimensional TFs have a very 
limited classification power because they can not make 
distinction between volume regions defined by scalar 
values within the same range. On the other hand, multi-
dimensional transfer functions can perform better 
classification because they can take into account not 
only the scalar value of a voxel [8], but also other 
attributes like gradient magnitude, directional second 
derivative, curvature [7] and statistical measures [23]. 

Figure 1. The sheep heart dataset viewed with two TFs, 
represented as circle in the color map. The circle 
represents a Gaussian opacity function with peak – 
maximum opacity – at the center. The color maps are 
fixed, with red, green and blue representing scalar value, 
gradient magnitude and directional second derivative, 
respectively. 

Designing an appropriate transfer function, even a 
one-dimensional TF, is a difficult task and much 
attention has been given to this issue in the literature 
after Pfister et al.[15]. As the domain dimension 
increases, the visualization of the transfer function 
becomes more difficult, and so the interaction with it. 
Controlled modifications of color and opacity transfer 
functions allow enhancing parts of the datasets, thus 
hiding features and revealing others that the user is 
trying to isolate. This way, the representation of the 



transfer functions and the ways the user can interact 
with them play an important role in the exploration of 
inner structures in volumetric datasets. 

In this paper we present an interactive technique for 
the design of multi-dimensional transfer functions. 
With our approach the user can interact with a 
simplified representation of the TFs obtaining different 
informative visualizations in a very easy and fast way 
(Figure 1). We discuss the resulting method compared 
to a previous interface for specifying one-dimensional 
transfer functions. 

The paper is organized as follows. Next sections 
present the closest related works, including a brief 
review of our previous work. Section 3 describes our 
approach in detail, while main implementation aspects 
are discussed in Section 4. Section 5 discusses the 
results obtained with our method, and finally, in 
Section 6 we draw some conclusions and point out 
future work. 

2. Related work 

2.1. One-Dimensional transfer function 
specification 

Traditional approaches for TF specification rely on 
the user's effort in adjusting control points of a graphic 
plot mapping voxel values to opacity level and/or color 
tone. The control points are then interpolated in order 
to build the TF. But, with no clues or prior knowledge 
about the data, this is a “blind process”. Some data-
driven approaches provide to the user higher-level 
information [2][14] that helps in obtaining insight 
about the data distribution as well as supports the 
manual TF design. Other methods build abstractions of 
the TF specification process - the transfer functions can 
be hidden from the user [24] or a simplified space can 
be presented [6].  

Kindlmann and Durkin [6] proposed a derived space 
for specification of opacity transfer functions in which 
the user specifies opacities for voxels as a function of 
the distance between the voxel and the nearest 
boundary. Informative histograms are built relating
voxel values with the first and second derivative values 
associated to each voxel in the volume. From these 
histograms, the mean first and second derivative values 
associated to each voxel value are used to estimate the 
distance to the nearest border. Since the boundaries 
must be emphasized, voxel values with small estimated 
distances should receive larger opacity values.  
Prauchner et al. [18] used Kindlmann’s method to 
classify the voxel values by the estimated distance to 
the nearest border. A set of voxel values with the 

smallest distances is elected and random subsets are 
then built. The values of each subset are used as control 
points for the TF specification. Each of these points 
receives a random color and a random opacity value 
different from zero. The transfer functions are obtained 
by interpolating the control points. Consequently, each 
subset of the “best'” voxel values derives a transfer 
function to be presented in a gallery of thumbnails, 
similar to the Design Galleries method [13]. This is the 
first level of the two-level interaction interface 
proposed by Prauchner et al. In the second level, the 
user can visualize a selected thumbnail in better 
resolution and refine its TF by adjusting the control 
points manually. The thumbnails can be randomly re-
generated any time at interactive rates. 

Following this two-level interaction interface 
approach, we [16] also adopted the gallery to present 
several thumbnails generated initially through a 
boundary emphasis technique, following Kindlmann 
and Durkin [6]. At this level, the user can generate new 
thumbnails (TFs) by either reapplying the boundary 
emphasis or selecting thumbnails as parents of a next 
generation of TFs, which are generated using an 
stochastic approach by He et al.[4].  The user can also 
select a specific thumbnail, and go to the second-level 
of interaction. At this level, looking at the rendered 
volume in high resolution, the user can modify the TF 
manually either by interacting with the TF graphic plot 
(Figure 2) or by picking voxels – to be emphasized by 
increasing the opacity for its scalar value – from a 
cutting plane (Figure 3). This work was published in 
SIBGRAPI 2006 and its extended version is to appear 
in a Computer and Graphics special issue. 

2.2. Multi-dimensional transfer function 
specification 

The design of multi-dimensional transfer functions 
brings challenges regarding both the visualization of 
the TF as well as the exploration of the TF domain.

It is possible to explicitly define a multi-dimensional 
transfer function by interacting in its domain with 
proper tools. Kniss et al. [8] proposed a volume 
rendering environment containing a set of direct 
manipulation widgets for volume inspection, 
visualization of data distribution and design of three-
dimensional transfer functions, using dual domain 
interaction. 

However, the difficulty of exploring the transfer 
function domain increases with its dimensionality; 
therefore some approaches for transfer function design 
provide interfaces based on interaction in a simplified 
space. Region growing techniques were used by Huang 



and Ma [5] to segment volume data from seed points 
specified by the user; voxel signatures of the segmented 
region were used to automatically design a transfer 
function. 

Tzeng and Ma [25] clusterized voxel's signatures by 
similarity allowing the user to specify the desired 
classification by successively splitting and merging the 
clusters. The user sees the results by associating visual 
properties to each material class. The same authors 
[26] implemented multi-dimensional transfer functions 
using neural networks and support vector machines. 
They evaluate a classification function learned from 
training sets selected through a slice painting interface. 
The user paints the voxels of interest with a specific 
color, and the undesired ones with a different color. 
This way they implement a binary classification 
scheme. 

Sêreda et al. [20] used hierarchical clustering to 
group voxels according to their LH signatures [21]. 
The user navigates through the hierarchy searching for 
the branches corresponding to regions of interest. 
Takanashi et al. [22] used independent component 
analysis (ICA) of multi-dimensional voxel signatures in 
order to represent them in a space where the 
classification is performed by moving axis aligned 
separation planes. Rezk-Salama et al. [19] created 
models of transfer functions that are carefully adjusted 
by specialists for several data sets of the same type in 
order to reveal the desired structures. Then, they 
applied PCA to represent the parameter set of each 
model by a single variable with an associated semantic. 
The models can be reused for new data sets by setting 
only that variable. 

In order to have a generic design technique, we can 
consider designing a one-dimensional transfer function 
as a case of designing a multi-dimensional TF where 
the user selects only one variable to represent the voxel 
signature. In [17], we reported a method for designing 
nD-TFs, where voxel signatures are extracted from the 
volumetric dataset to be visualized, 2D or spherical 
self-organizing maps are built from the voxels 
signatures, and a dimensional reduction step results in 
voxels signatures being replaced by their coordinates in 
map space. These processes are performed off-line and 
perform non-linear dimensional reduction of voxel 
signatures. The result can be thought as a non-discrete, 
non-linear voxel classification scheme that group 
voxels by similarity and map them to a two-
dimensional space: a square or a spherical surface. 
During rendering the user can specify color and opacity 
transfer functions by navigating on the map with a 
cursor that is the peak of a Gaussian opacity function.  
Next section presents this method in detail. 

Figure 2: Manual design of one-dimensional opacity and 
color transfer functions.  

Figure 3. Top image: dataset1 rendered using the TF 
shown at the left side. Bottom images: the voxel pointed 
by the cursor has the value marked as a white square in 
the TF plot. Opacity associated with this value can be 
interactively increased by the user. 

3. Design of multi-dimensional transfer 
functions 

Figure 4 shows the process of obtaining meaningful 
transfer functions for nD signatures. Our work on this 
subject [17] was published in EuroVis 2007. 

                                                          
1 Dataset “Laçador” kindly provided by LACEM-UFRGS. 



3.1. Map building process 

The map building process starts with a 
preprocessing phase, when complex voxel's signatures 
(like derivative values, statistical measures, etc.) are 
extracted from the volume data and normalized. This 
way, each voxel has an nD signature (a set of scalar 
values represented as a vector) that can be used as a 
training case for the self-organizing (Kohonen) map 
building algorithm. It is important to mention that, 
depending on the source of volume data, there are 
many background voxels which do not carry useful 
information (air around scanned objects in CT/MRI 
volume data, for example), and would influence the 
map due to their high occurrence. Upon user decision, 
they can be partially removed from the input set of the 
training process by a very simple region growing 
technique using as seeds the voxels identified as 
background in the most exterior regions of the volume. 

The signatures of all non-background voxels are 
employed as training cases presented in random order 
to the self-organizing map, and two types of 
neighborhood functions are applied. In a first stage we 
define the overall aspect of the map by training it using 
a Gaussian neighborhood function, and then, we 
continue the map training with a modified 
neighborhood function that depends not only on the 
topological distance, but also on the distance between 
the training case and the weight vector of the winner 
cell (refer to [17], for further details). This modified 
neighborhood function is designed in order to allow a 
voxel with a signature far from the weight vector of the 
corresponding winner cell (according to the distance 
metric) to have more influence on the map. Without 
this strategy, large homogeneous regions of the volume 
would tend to dominate the map, while important 
regions with fewer voxels would be badly represented 
(signatures far from their respective winner cells).  

We use as topological distance the Euclidean 
distance between the integer 2D coordinates of two 
cells in the map grid. For spherical maps, the 
topological distance is the number of edges in the 
shortest path connecting two cells. 

At the end of this process, we have a Kohonen (or 
spherical) map where each cell has an associated 
weight vector that represents a class of voxels, being 
the most similar weight vector for all elements in that 
class. 

3.2. Dimensional reduction 

Dimensional reduction was motivated by the need of 
providing a simplified space for the user to interact 

with the multi-dimensional transfer functions. When 
using Kohonen maps, two-dimensional map space 
coordinates in the interval from zero to one can be 
associated to cells according to their position in the 2D 
grid. Dimensional reduction can be performed by 
replacing each voxel signature by the coordinates of its 
respective winner cell. However, this would cause 
unnecessary discretization. To avoid this, we create 
two multiquadric radial basis functions (multiquadric 
RBFs), for x and y map space coordinates, based on the 
weight vectors of all cells. For spherical maps we adopt 
x, y and z position coordinates ranging from -1 to 1, 
and use three RBFs to obtain the coordinates of voxel's 
signatures. Thus, the RBFs supports the final step in 
dimensional reduction of voxel signatures by 
producing, through interpolation, the proper x and y 
(and z) map coordinates for each nD voxel signature.  

Figure 4. Distribution of processes between CPU and 
GPU for obtaining opacity and color TFs from nD voxel 
signatures.     

Dimensional reduction normally implies loss and 
distortion of information, but volumetric data usually 
have properties that reduce this problem. The voxels 
signatures are usually not uniformly distributed in their 
domain (they form clusters, which are well represented 
in the map), and elements of the voxel signatures are 
often not completely independent [22]. Moreover, 
voxel signatures that are not present in the training set 
do not require space in the map. 

3.3. Transfer functions specification 

After the dimensional reduction step, the continuous 
map space defined by the RBFs becomes the TF 
domain. The user can interactively define the mapping 
from map coordinates (which represent voxel's 
signatures) to optical properties. We propose an 



interface for specification of color and opacity transfer 
functions that provides dual domain interaction [8] as 
well as visualizations of the transfer function and of the 
voxel signatures. 

3.3.1. Interaction in TF-domain.  The visualization of 
voxel's signatures in our interface is obtained by 
directly mapping up to three elements of the weight 
vectors of the map cells (which actually are elements of 
the voxel signature) to the three color channels. The 
user decides which element of the nD signatures should 
be mapped to each basic color. One element can be 
associated to more than one color channel and a color 
channel may have no elements mapped to it. This 
interface feature illustrates the distribution of voxel's 
signatures on the map and can be used to build color 
TFs as described below.  Figure 5 (a and b) shows the 
distribution of voxel's signatures of the well known 
engine data set. The same regions (clusters of 
signatures) can be found in both maps. 

The transfer function is represented as an RGBA 
image and is displayed by blending it with a 
checkerboard pattern. The blending function allows 
TFs with small opacities to be clearly visualized. 
Figure 5 displays TFs on a Kohonen map (c) and on a 
spherical map (d) generated for visualizing the engine 
data set. The volumetric rendering of the data set using 
the TF in Figure 5c is shown in Figure 7a. 

Transfer functions are composed by blending 
several 2D Gaussian opacity TFs, each one having an 
associated 2D color TF. We provide three types of 
color transfer functions that can be associated to a 
Gaussian opacity function: a constant color chosen 
from a colorpicker; map coordinates directly mapped to 
color channels; and elements of weight vectors of map 
cells mapped to color channels (for each map 
coordinate the weight vectors of the near cells are 
interpolated and mapped to colors). At each step a new 
Gaussian TF is specified and then blended with the 
current TF, for opacity and color. The result becomes 
the current transfer function and the composition 
continues until the desired TF is reached. At start, the 
current TF has zero opacity and RGB colors for all the 
map space. 

In our interface, by clicking or dragging the mouse 
on the map representation, the user moves a circle 
whose center is the peak of a Gaussian function and 
whose radius is its standard deviation �. The Gaussian 
TF is scaled by a constant k between zero and one 
which is linearly mapped to the circle color, with blue 
being zero and red, one. The parameters � and k can be 
increased or decreased using the keyboard. In order to 
fully explore the spherical maps, they can be rotated by 

dragging the mouse using the right button. The 
Gaussian opacity transfer function is defined in terms 
of the distance to the center of the circle. 

Figure 5. Maps of 3D voxel's signatures (a and  b). Scalar 
value is mapped to red, gradient magnitude to green and 
second derivative in the gradient direction to blue. 
Transfer functions displayed on a Kohonen map (c) and 
on a spherical map (d).

The transfer function used for rendering is the 
composition of the current TF and the Gaussian 
function represented by the circle. This scheme 
provides interactive previewing of the effect of the 
composition while the user explores the map by 
moving the circle on it. When the desired effect is 
reached, the user can set the composition as the current 
TF using the space bar, and other Gaussian function 
can be further experimented.  

Our interface (Figure 8) keeps track of all transfer 
functions defined during a session, and provides a tree 
representation of this evolution using static thumbnails 
of the volume rendered with the corresponding TF. 
This allows simple recovering of previous TFs by 
clicking on the thumbnails. 

3.3.2. Interaction in TF-domain. At any time the user 
can rotate and translate the volume and place a clipping 
plane to better explore inner structures. The volume 
slice defined by the clipping plane is textured by 
mapping to color channels the map coordinates of the 
voxels sampled by the slice. This causes an interesting 
coloring effect that helps in inspecting the volume. The 
slice is blended with the rendered volume using an 
opacity value controlled by the user, as shown in 
Figure 6. When Kohonen maps are employed, the x 
and y map space coordinates of the voxels are mapped 



to red and green. When using a spherical map the x, y 
and z map space coordinates are mapped to RGB 
colors.  

The user can also click on the clipping plane to set 
the position of the Gaussian opacity function peak to 
the map coordinates of the voxel pointed by the mouse 
cursor, emphasizing that region. By moving the mouse 
on the clipping plane, the user can see the position of 
the pointed voxel depicted as a white cross in the map 
graphical representation (Figure 1). This spatial domain 
interaction mapped to TF domain helps in 
understanding the relationship between both domains. 

Figure 6. Visualizations of the tooth data set: a semi-
transparent slice blended with the tooth image rendered 
using a transfer function specified in a 2D space built 
from a Kohonen map (a); and a fully opaque slice of the 
tooth colored according to voxel coordinates in a 
spherical map (b). The noisy regions can be clearly seen. 
The red arrow is the plane normal.

4. Implementation aspects 

We implemented map training and dimensional 
reduction as offline processes, but rendering and 
transfer function specification demand interactive rates, 
which are achieved through an intensive use of the 
GPU (see Figure 4). 

The map coordinates of the voxels are stored in a 
3D RGB texture, which is sampled using view-aligned 
slices as proxy geometry. When using a Kohonen map, 
the transfer function is stored in a 2D RGBA texture 
which is accessed by using the R and G components 
(the x and y map coordinates) of the sampled 3D RGB 
texture. The blue component is used to identify 
background (zero) or non-background (one) voxels. 
Background voxels must receive zero opacity during 
rendering since they are not well represented in the 
map. Nevertheless, due to hardware interpolation, the 
blue component can assume values between zero and 

one. With this in mind, the opacity is actually 
modulated by a smoothed step function of the blue 
component. When using a spherical map, the TF is 
stored in the GPU memory as an RGBA cube map and 
is accessed using the RGB values of the 3D texture, 
taken as vectors (the value of each color channel is first 
converted to the interval [-1, 1]. Background voxels 
have null vectors and the opacity is modulated by a 
smoothed step function of the L2-norm of the vectors. 
The blending of TFs and the evaluation of Gaussian 
opacity functions also run in GPU. 

When sampling the three-dimensional texture for 
rendering, interpolation must be performed. The 
hardware can automatically interpolate the map 
coordinates stored in the 3D texture and generally this 
produces good results. However, in our approach, it is 
more correct to interpolate color and opacity associated 
to voxels (see [3] for better understanding). In our 
implementation, we use the GPU to create another 3D 
texture, with the same size, containing the RGBA 
values that result from the evaluation of the transfer 
function for each voxel, and this texture is sampled for 
rendering. When the transfer function changes, this 
texture must be recomputed, but this strategy is fast 
enough for our purposes. We also calculate another 3D 
RGB texture to store the gradient field of the opacity. 
This is done in GPU by applying central differences on 
each voxel. The opposite vector of the gradient of the 
opacity is used as surface normal for shading. Since we 
are using complex signatures for each voxel, this 
scheme for normal evaluation is more accurate than to 
sample a 3D texture containing the precomputed 
normals of the scalar field. Additionally, the normals of 
the opacity field do not have ambiguity in their 
orientation (see [11]). In our implementation, we set 
hardware interpolation of map coordinates and pre-
computed normals as default options, but the user can 
select color and opacity interpolation and normals 
computed on the fly as high-quality rendering options. 

As for the RBF design, we solve the systems of 
equations with the Lapack library [1]. GLUT and the 
GLUI libraries are used for the interface, while the 
rendering is based on OpenGL and Cg, with the 
framebuffer objects extension of OpenGL used in 
hardware accelerated computing (Figure 8 depicts the 
whole interface). 

5. Results and discussion 

5.1. Visualization 

We tested our method using well-known data sets 
(see Figure 7), comprising scalar and multivariate 



volume data. Similar results were obtained using 
Kohonen and spherical maps. Most of the data sets 
were successfully visualized using voxels signatures 
based on the scalar value, gradient magnitude and 
directional second derivative. For noisy scalar data, 
however, we achieved better results using statistical 
signatures like mean scalar value, standard deviation, 
and cubic root of the third-order statistical moment, 
taken from a small subvolume centered at the voxel 
under focus.  

(a)   (b) 

(c) 

(d)   (e) 

(f) 

Figure 7. Visualizations obtained using Kohonen maps: 
(a) engine data set and (c) carp data set, both using scalar 
and derivative values (gradient magnitude and directional 
second derivative) as voxel signature; (b) foot data set, 
using statistical signatures (mean scalar value, standard 
deviation, cubic root of the third-order statistical 
moment); and (f) carp data set, using the normalized z
coordinate of the voxels and same three statistical 
signatures, (z axis is horizontally represented); and 
Spherical maps: (d) hurricane data set at the 24th time 
step, using wind speed, pressure and temperature as voxel 
signature; and (e) sheep heart data set, using the same 
statistical signatures as (b). 

Due to the loss and distortion of information usually 
caused by dimensional reduction, our method can not 
provide accurate quantitative information about the 
volume data during the transfer function specification. 
However, our approach is well suitable for revealing 
qualitative aspects like shape of structures and 
dissimilarity between regions. 

Figure 7 shows visualizations of test data sets 
obtained using different sets of voxel attributes as 
signatures. In all these renderings, we used the 
automatic generated color transfer functions (see 
Subsection 3.3.1). For the hurricane data set we used 
only the colormap which assigns voxel attributes to 
color channels, since the attributes carry a clear 
physical meaning: temperature was mapped to red, 
pressure to green and wind speed to blue. However, the 
tooth data set (see Figure 6) was visualized using 
manually chosen colormaps and statistical signatures, 
achieving a very good separation of the pulp.  

Since self-organizing maps group similar voxel 
signatures, the automatic generated color transfer 
functions produce very good results because they 
assign different colors to different regions of the map, 
which correspond to voxels with considerably different 
attribute's values. 

The importance of each voxel attribute is defined by 
weights. We suggest associating smaller weights for 
higher-order voxel attributes. The visualizations 
presented in this paper were produced using weights of 
1.3, 1.0 and 0.7 for the statistical variables formerly 
mentioned, respectively, and the same weights for 
scalar and first and second derivative values, 
respectively. For the hurricane data set the weights 
were 1.0 for wind speed and pressure, and 0.5 for 
temperature. 

Regarding the shading using normals computed on 
the fly, results can be seen in Figure 7 (c, d and e). It is 
worth to mention that for the multivariate data sets, like 
the hurricane, we can not use meaningful pre-computed 
normals. 

5.2. Interaction 

Figure 1 (a and b) shows 2 views of the well-known 
sheep heart dataset obtained by simply moving the 
peak of the Gaussian TF on the map space (see 
Subsection 3.3.1) from the position in Figure 1(a) to 
that on Figure 1(b). The difference in the color of the 
circle also indicates a difference in the value of a 
specific parameter (k) from one opacity function to the 
other.  Automatically generated color transfer functions 
are usually a good choice, which turns the design 



process less difficult. This is the case in the examples 
shown here.  

By moving the Gaussian opacity function on the 
map space, the user quickly obtains an overview of the 
main structures in the data volume. Users can tune 
opacity levels and combine TFs with simple (keyboard) 
input. Careful tuning of parameters of the Gaussian 
functions and their combination allow building 
meaningful visualizations. 

In comparison to the previous design technique, 
targeted at one-dimensional transfer functions, the 
method described herein can be thought as including 
boundary emphasis since the derived attributes are 
often intended to capture the boundaries between 
regions. Thus, the interactive tasks of enhancing 
boundaries that a user had to accomplish with the 
previous interface are automatically included in the 
exploration of the map and setting of Gaussian 
functions at specific positions on it.  

The history tree, briefly described in Subsection 
3.3.1, provides a powerful mechanism for exploring the 
transfer function domain, allowing not only “undo” and 
“redo” operations, but navigation in the whole history 
of TF modifications. Both design interfaces have this 
feature, which proved to be necessary due to the 
interactivity of the TF design process, which can yield 
to situations where the user “looses” a good transfer 
function. 

6. Conclusions 

In this paper we presented a new approach for the 
design of multi-dimensional transfer function that uses 
self-organizing maps to perform dimensional reduction 
of the voxel attributes. The strongest points of our 
technique are simplicity and flexibility. Our approach 
allows building multi-dimensional transfer functions 
through the exploration of a simplified (reduced) space 
where traditional interaction techniques can be 
employed. A simple and effective interface for transfer 
function design is provided, and the user can interact 
with the system in both spatial and TF domains. 

Self-organizing maps have the ability of 
representing clusters of voxel's signatures in a compact 
way, and this helps to understand the data distribution. 
All relevant voxel's signatures are represented in the 
map and every region of the map has voxels mapped to 
it. Moreover, exploring two-dimensional maps is easier 
and faster than navigating through a class hierarchy. 
The proposed dimensional reduction scheme requires a 
preprocessing step, but it has clear advantages in 
relation to volume segmentation techniques because it 
performs a non-discrete classification which can 

represent uncertainty. In addition, with simple 
interaction, the user can change the transfer function 
defined in the map space, interactively obtaining new 
visualizations in real-time. 

As future work, regarding interaction with the TF, 
we want to transport transfer functions designed in map 
space to the actual multi-dimensional space using the 
Gaussian multi-dimensional TFs proposed by Kniss et 
al. [9]. Another promising future work is the semi-
automatic search for important structures in the map. 
This search could be aided by an interface that would 
provide additional information about the spatial 
distribution of voxels. 
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Figure 8. Visualization tool interface showing the main visualization window, the color map with a Gaussian TF marked as a 
circle and the history tree that maintains the TFs defined along the design process. At the right the controls for specifying the 
mapping between voxel attributes to colors, in the color map; the map types, and other configuration parameters.   


