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Abstract

The past two decades showed a rapid growing of
physically-based modeling of fluids and solid for com-
puter graphics applications. In particular, techniques in the
field of Computational Mechanics have been applied for re-
alistic animation of systems that involve gas-fluid and
fluid-surface interaction for computer graphics and vir-
tual reality applications. The main goal of our work is the
development of a particle based framework to create re-
alistic animations of such systems. Specifically, we model
and simulate the gas through a Lattice Gas Cellular Au-
tomata (LGCA), the liquid by Smoothed Particle Hydrody-
namics (SPH) method and the surface through Mass-Spring
systems. LGCAs are discrete models based on point parti-
cles that move on a lattice, according to suitable rules in
order to mimic a fully molecular dynamics. SPH is a La-
grangian, meshfree method for numerical simulation
which is based on particle systems and interpolation the-
ory. Mass-Spring systems may be geometrically repre-
sented by regular meshes which nodes are treated like
mass points and each edge acts like a spring. When com-
bining these methods (LGCA, SPH and Mass-Spring), we
get the advantage of the low computational cost of cellu-
lar automata and mass-spring systems and the realistic
fluid dynamics inherent in the SPH to develop a new ani-
mating framework for computer graphics applications. In
this work, we discuss the theoretical elements of our pro-
posal and present some preliminary experimental re-
sults.1

1. Introduction

Physically-based techniques for the animation of natu-
ral elements like fluids (gas or liquids), flood, elastic, plas-
tic and melting objects, among others, have taken the at-
tention of the computer graphics community [25, 36, 11].

1 Full paper of M.Sc thesis.

In particular, techniques in the field of Computational Fluid
Dynamics (CFD) have been applied for fluid animation in
applications that involve fluid-fluid and fluid-surface inter-
action [35, 28, 19, 8, 31].

A common approach in this area relies on top down
viewpoints that use 2D/3D mesh based techniques in con-
junction with fluid/solid equations [8]. Other possibility is
to apply Mass-Spring systems to model the elastic object
[19], SPH to simulate fluids [28, 34] and Lattice Gas Cel-
lular Automata (LGCA) techniques to simulate gas systems
[21, 3].

Mass-Spring models are well suited to animation due to
their flexibility to handle non-rigid solid properties, its easy
manipulation and implementation. Besides, Mass-Spring
models can be faster then their counterpart in continuous
mechanics, and so, more suitable for real time applications
specially when GPU capabilities are explored [33]. The
LGCAs are bottom up discrete models, based on point par-
ticles that move on a lattice, according to suitable and lo-
cal rules, that mimics a fully particle dynamics [17]. These
methods are cheaper and more stable than the traditional
ones for fluid simulation, because there is no need to solve
Partial Differential Equations (PDEs) to obtain a high level
of description [3]. SPH is a Lagrangian, meshfree method
for numerical simulation which is based on particle systems
and interpolation theory.

In this paper we propose a framework for animation
of fluid-fluid and fluid-surface interaction based on Mass-
Spring systems, LGCA techniques and SPH. We apply a
traditional Mass-Spring model described in [33] that can
be used for both surface and deformable solid modeling.
Among the LGCA models [10] we apply the FHP one
which was introduced by Frisch, Hasslacher and Pomeau
[18] in 1986. The traditional FHP is a model for two-
dimensional fluids that describes the motion of particles
traveling in a discrete space and colliding with each other.
The space is discretized in a hexagonal lattice. We proposed
a three dimensional fluid simulation model based on the
FHP and interpolation techniques. The SPH implementa-
tion follows the method presented in [34]. Finally, render-



ing techniques must be applied to ensure the desired level
of realism or visual effect. In this step we apply the pho-
ton map [27] method because it is able to easily generate
area light sources, color bleeding, soft shadows, indirect il-
lumination and caustics, once it collects illumination infor-
mation of the scene by a pre-trace from light sources.

The main contributions of this work are the 3D fluid sim-
ulation model based on the FHP and the development of a
particle based framework, combining Mass Spring systems,
LGCA techniques and SPH, to create realistic animations
of systems that involve gas-fluid and fluid-surface interac-
tion for computer graphics and virtual reality applications.

The paper is organized as follows. Section 2 gives a sur-
vey of related works. Section 3 offers some fundamental
concepts in Navier-Stokes equations. Section 4 describes
the SPH method. Section 5 describes the FHP model and
our extension for 3D. In section 6 we presentes the Mass-
Spring model used. The rendering model is discussed on
section 7. Section 8 describes the proposed framework and
some preliminary results. In section 9 we present the con-
clusions.

2. Related Works

The main focus of this work is the animation of gas-fluid
and fluid-surface interaction. The former can be modeled
by a FHP method in which there are two kinds of particles
- gas particles and liquid particles [2]. Then, Boltzmann ap-
proximation is applied to calculate the surface tension as a
function of population density.

In [43] an interface model is derived for two-phase flows
with surface tension, density and viscosity differences be-
tween the phases. The derivation starts from the balance
equations for a sharp interface and uses an ensemble av-
eraging procedure on an atomic scale to obtain a diffuse in-
terface version of the equations [12, 43]. Other approach
models the interfacial tension is to detect the interfacial sur-
face (boundary between the gas and liquid phases) and then
to compute the interaction forces following some heuristic.

Fluid-surface interaction includes: (1) Representation of
the object geometry; (2) The modeling of mechanical be-
havior of elastic surfaces; (3) A suitable model for fluid sim-
ulation; (4) A model for interaction of the flow with the ob-
ject; (5) Rendering issues.

Bidimensional manifolds can be represented by using
implicit surfaces [47], triangulated meshes or subdivision
surfaces with local parameterization for representation [22,
42]. The mechanical behavior of deformable surfaces (item
(2)) can be described by continuum elasticity models that
describes how the objects deform under applied forces.
Other possibility is to apply discrete models, based on
Mass-Spring systems [19, 33]. In this case, the object ge-
ometry is represented by a mesh and its nodes are treated

like mass points while each edge acts like a spring connect-
ing two adjacent mass points. It is known that methods that
are based on the continuum mechanics are more realistic
than their discrete counterparts [44]. However, Mass-Spring
models can be faster, and so, more suitable for real time ap-
plications [44, 14].

The item (3) involves numerous works that can be
coarsely classified in non-physically and physically based
models [25, 11]. Our work belongs to the later class,
which can be subdivided in PDEs and Lattice based tech-
niques [17, 25].

PDEs methods involve continuous fluid equation, like
the Navier-Stokes ones, and numerical techniques based on
discretization approaches that can be Lagrangian Smoothed
Particle Hydrodynamics (SPH) [29], method of character-
istics [41], Moving-Particle Semi-Implicit [37] or Eulerian
(Finite Element) ones [16].

Lattice based techniques, like HPP, FHP and Lattice
Boltzmann methods, work following a different viewpoint
[17, 5]. For instance, in the case of HPP and FHP, instead of
applying continuous mechanics (and, consequently, PDEs)
principles, they model the system as a set of point parti-
cles, that move on a lattice, interacting according to suit-
able and simple rules in order to mimics a fully dynamics
[17]. These are bottom up approaches in which the macro-
scopic behavior of the fluid can be recovered by multiscale
techniques [17].

Lattice models have a number of advantages over
more traditional numerical methods, particularly when flu-
ids mixing and phase transitions occur [38]. The sim-
ulation is always performed on a regular grid and can
be efficiently implemented on a massively parallel com-
puter. Solid boundaries and multiple fluids can be intro-
duced in a straightforward manner and the simulation is
performed equally efficiently, regardless of the complex-
ity of the boundary or interface [7]. In addition there are
not numerical stability issues because the evolution fol-
lows integer arithmetic. However, system parameteriza-
tion (viscosity, for example) is a difficult task in such lattice
models and they are less realistic than PDE based mod-
els.

The item (4), interaction between deformable manifolds
and fluids, can be addressed by hybrid methods in which
the fluid is a continuum medium, simulated by Navier-
Stokes plus SPH or grid based techniques, and the sur-
face is represented as a discrete one [19, 40, 4]. These ap-
proaches deal with the specific problem of preventing the
leaking of fluid across the polygonal surface [22, 6]. In ad-
dition, fluid flows can be simulated on 2D manifolds repre-
sented by (continuous) subdivision surfaces that have a nat-
ural quad patch parametrization [42]. Interaction between
Navier-Stokes fluids and digital terrain models is another
subclass of fluid-surface interaction [46]. Besides, a hybrid



particle and implicit surface approach to simulating water
was proposed in [15], which led to the particle level set
method of [13].

Finally, visualization and rendering techniques must
be applied to ensure the desired level of realism or vi-
sual effect. Photo-realistic rendering can properly account
through several algorithms including path tracing, bidirec-
tional path tracing [23], Metropolis light transport [45],
and photon map [27]. The interested reader is also encour-
aged to browse interesting reviews in this area [1, 25].

In this paper, the proposed method for gas-liquid interac-
tion is a hybrid one in the sense that the gas is simulated by
a discrete system and the fluid is animated by Navier-Stokes
plus SPH. On the other hand, the fluid-surface interactions
model is a discrete one because the fluid is FHP-based and
the surfaces are represented by polygonal meshes, or Mass-
Spring systems in the case of deformable manifolds.

3. Navier-Stokes for Fluid Animation

The majority fluid models in computer graphics follow
the Eulerian formulation of fluid mechanics that is based on
a top down viewpoint of the nature: the fluid is considered
as a continuous system subjected to Newton’s and conserva-
tion Laws as well as state equations connecting the macro-
scopic variables of pressure P , density ρ and temperature
T . So, the mass conservation, also called continuity equa-
tion, is given by [24]:

∂ρ

∂t
+∇ · (ρ~u) = 0 (1)

The linear momentum conservation equation, also called
Navier-Stokes, can be obtained by applying the third New-
ton’s Law to a volume element dV of fluid. For incompress-
ible flows it can be written as [24]:

ρ

(
∂~u

∂t
+ ~u·∇~u

)
= −∇P + F + µ∇2~u, (2)

∇·~u = 0. (3)

where F is an external force field and µ is the viscosity of
the fluid. Also, we may need an additional equation for the
pressure field. This is a state equation which ties together all
of the conservation equations for continuum fluid dynamics
and must be chosen to model the appropriate fluid (i.e. com-
pressible or incompressible). In the case of liquids, the pres-
sure P is temperature insensitive and can be approximated
by P = P (ρ). Morris in [32] proposed an expression that
have been used for fluid animation also [34]:

P = c2ρ, (4)

where c is the speed of sound in this fluid
[39]. Equations (2)-(4) need initial conditions

(ρ (t = 0, x, y, z) , ~u (t = 0, x, y, z)) as well as bound-
ary conditions, like the usual no-sleep one: ~u|S = 0.

4. Smooth Particle Hydrodynamics

In this section we follow the references [39, 30]. The
two fundamental elements in the Smoothed Particle Hydro-
dynamics method are an interpolation kernelW and a parti-
cle system that represents a discrete version (sample) of the
fluid. The kernel estimate of a scalar quantity A(r) is de-
fined by:

〈A(r)〉 =
∫
Space

A(r′)W (r− r′, h) dr′, (5)

where the function W (r− r′, h) is an (interpolation) kernel
which must satisfies the following properties [30]:

1) Volume conservation:

∫
Space

W (r− r′, h) dr′ = 1, (6)

2) The kernel W should satisfy the Dirac delta function
in the limit:

lim
h→0

W (r− r′, h) = δ(r− r′). (7)

If we take a sampling of A then the A(r′) in equa-
tion (5) will be known only at a discrete set of N points
r1, r2, ..., rN . Hence, thorough properties (6)-(7) it is pos-
sible to show that [39]:

〈A(r)〉 =
N∑
j=1

mj

ρ(rj)
A(rj)W (r− rj , h). (8)

〈∇rA(r)〉 =
N∑
j=1

mj

ρ(rj)
A(rj)∇rW (r− rj , h). (9)

An analogous expression can be obtained by the Lapla-
cian. From equation (9) we can observe that there is no need
for a mesh to compute spatial derivatives. With equations
(8) and (9), we are ready to write the discrete version of the
fluid equations of section 3. The smoothing lengh h is the
width of the kernel and defines the distance at which a par-
ticle interacts with other particles. It is equivalent to the size
of a grid-cell in finite difference methods.

We rewrite the terms of the Navier-Stokes equation (2),
using this approach, as:



~fpressi = −
∑
j

mj
pi + pj

2ρj
~∇W (ri − rj , h)

~fvisci = µ
∑
j

mj
~vj − ~vi
ρj

~∇2W (ri − rj , h)

~fgravj = ρj ~gj

where the ~fpressi and ~fvisci are the pressure and viscosity
forces. Only the gravity force ~fgravi is considered as exter-
nal force. The density at each particle can be found from the
following equation:

ρi =
N∑
j=1

ρjmjW (ri − rj , h).

In order to have stability we adopt the following kernels
[34]:

Wgrav(r, h) =
315

64πh9

{
(h2 − r2)3, 0 ≤ r ≤ h,
0, otherwise

Wpress(r, h) =
15
πh6

{
(h− r)3, 0 ≤ r ≤ h,
0, otherwise

Wvisc(r, h) =
15

2πh3

{
− r3

2h3 + r2

h2 + h
2r − 1, 0 ≤ r ≤ h,

0, otherwise

5. FHP

The FHP was introduced by Frisch, Hasslacher and
Pomeau [18] in 1986 and is a model of a two-dimensional
fluid. It can be seen as an abstraction, at a microscopic
scale, of a fluid. The FHP model describes the mo-
tion of particles traveling in a discrete space and colliding
with each other. The space is discretized in a hexagonal lat-
tice.

The FHP particles move in discrete time steps, with a ve-
locity of constant modulus, pointing along one of the six di-
rections of the lattice. The dynamics is such that no more
than one particle enters the same node at the same time with
the same velocity. This restriction is the exclusion principle;
it ensures that six Boolean variables at each lattice node are
always enough to represent the microdynamics.

The velocity modulus is such that, in a time step, each
particle travels one lattice spacing and reaches a nearest-
neighbor node. When exactly two particles enter the same
node with opposite velocities, both of them are deflected
by 60 degrees so that the output of the collision is still a
zero momentum configuration with two particles. The de-
flection can occur to the right or to the left, indifferently, as
shown in Figure 1. For symmetry reasons, the two possibil-
ities are chosen randomly, with equal probability.

Figure 1. The two-body collision in the FHP.
Source [21]

When exactly three particles collide with an angle of 120
degrees between each other, they bounce back to where they
come from (so that the momentum after the collision is zero,
as it was before the collision). Both two- and three-body
collisions are necessary to avoid extra conservation laws.
For all other configurations no collision occurs and the par-
ticles go through as if they were transparent to each other.

The full microdynamics of the FHP model can be ex-
pressed by evolution equations for the occupation numbers
defined as the number, ni (r, t), of particle entering node r
at time t with a velocity pointing along direction ~ci, where
i = 1, 2, . . . , 6 labels the six lattice directions. The num-
bers ni can be 0 or 1. We also define the time step as ∆t

and the lattice spacing as ∆r. Thus, the six possible veloci-
ties ~vi of the particles are related to their directions of mo-
tion by

~vi =
∆r

∆t
~ci. (10)

The microdynamics of a LGCA is written as

ni (r + ∆r~ci, t+ ∆t) = ni (r, t) + Ωi (n (r, t)) (11)

where Ωi is called the collision term [9].
Now we propose an extension to 3D, using the 2D FHP

model explained above. In practice, the system of a given
cellular automata rule cannot deal with an infinite lattice,
it must be finite and have boundaries [9]. So, first we must
define a domain in the three dimensional space, where the
gas can evolve. Then, our proposal consists of regularly dis-
tribute planes along the x and z axis, like in Figure 2. Each
of these planes is a system whose cellular automata rule is
the 2D FHP.

Once simulated the two dimensional FHP in each plane
independently, we perform a simple interpolation to gener-
ate a 2D macroscopic flow in each plane. In this step, we
add new nodes to the FHP grid in order to complete a rect-
angular grid em each plane, as pictured in Figure 3.

Following the usual definition of statistical mechan-
ics, we compute the macroscopic density in each node
(xi, yi, zi) of the plane x = xi through the expres-
sion:

ρx (xi, yi, zi, t) =
∑
j∈V

6∑
k=1

nk (xj , yj , zj , t) , (12)



Figure 2. (a) Domain in 3D Space and (b) the
distribution of 2D FHP planes.

Figure 3. Extend the (a) FHP grid to generate
a (b) rectangular mesh.

where V is a neighborhood of point (xj , yj , zj).
An analogous expression can be used for the plane z =

zi. Now, we must render a 3D macroscopic flow. We shall
observe that each node (xi, yi, zi) in Figure 2 belongs to
the planes x = xi and z = zi. So, the 3D density (or ve-
locity) can be finally obtained through a simple mean of the
corresponding values in the FHP planes, that means:

ρ (xi, yi, zi, t) =
ρx (xi, yi, zi, t) + ρz (xi, yi, zi, t)

2
.

(13)

6. Mass-Spring Model

In this section we follow the reference [33]. The Mass-
Spring is a discrete model in which surfaces are represented
by polygonal meshes. The surface nodes works as masses
and the edges defines the linear springs with damping. So,

given a particle i with mass mi and position vector ri, the
force system is composed by the elastic (~felastici ), gravita-
tional (~fgravi ) and damping (~fdampi ) forces, defined respec-
tively, by:

~felastici =
4∑
j=1

kij (lij − ‖ri − rj‖)
(ri − rj)
‖ri − rj‖

, (14)

where kij is the stiffness of the spring linking the nodes ri
and rj and lij the spring rest length;

~fgravi = mi~g, (15)

~fdampi = γiṙi, (16)

where ~g is the gravity field, γi is the damping factor and
counter(i) holds the number of particles accumulated in
the corresponding position. Following Newton’s Laws, we
get the following evolution equation:

mir̈i = ~felastici + ~fdampi + ~fgravi , (17)

This system of ordinary differential equations can be ef-
ficiently solved by the Verlet integration technique [33]:

ri (t+ h) = 2ri (t)− ri (t− h) + r̈i (t)h2. (18)

7. Rendering through Photon Map

Originally developed for global illumination simulation
in scenes without participating media [26], Photon Map is a
two-pass method where the first pass is the construction of
structures to store the light information (photon maps) and
the second is rendering using these information. The con-
struction of the photon maps consists of photons emitted
from the light sources and traced through the scene using
photon tracing. Along the time evolution, if a photon hits a
nonspecular surface, it is stored in the photon map.

Jensen [26] proposed the use of two photon maps: a caus-
tics photon map and a global photon map. The caustics
photon map stores all photons that have been traced from
the light source through a number of specular reflections or
transmissions before intersecting a diffuse surface, and the
global photon map contains all photons representing indi-
rect illumination on a nonspecular surface. In the rendering
pass, the caustics photon map is used to render caustics di-
rectly and the global photon map is used to limit the num-
ber of reflections traced by the distribution ray tracer and to
sample indirect illumination more efficiently.

It is possible to estimate radiance at any given surface
position x using the photon map. By locating the n pho-
tons with the shortest distance to x it is possible to estimate
the photon density around x [27]:



Lr(x, ~ω) ≈
n∑
p=1

fr(x, ~ω
′
p, ~ω)

∆Φp(x, ~ω
′
p)

πr2
, (19)

where fr is the bidirectional reflectance distribution func-
tion, r is the distance to the nth nearest photon and ∆Φp
the flux carried by each photon p in direction ~ω′

p. This ap-
proach can be seen as expanding a sphere centered at x un-
til it contains n photons.

In [27], Jensen proposed an extension of the photon map
method to be able to use in scenes with participating media,
where photons can be scattered and absorbed by the media.
To efficiently render the medium, it is necessary to store in-
formation about these scattering events. This storage of the
photons occurs explicitly in the volume, given several ad-
vantages: the photons can be concentrated where necessary
to represent intense illumination, the media do not have to
be discretized and anisotropic scattering can be handled by
storing the incoming direction of each photon.

The relationship between the density of the photons and
the illumination is different on surfaces and in volumes.
Then, the photons must be separated when the photon map
is queried for information about the incoming flux. A sep-
arate volume photon map for the photons that are scattered
in participating media was introduced in [27], and it is used
to compute the illumination inside a participating medium
while the global photon map is used, as before, to compute
the illumination on surfaces.

Just like the original method, the first pass consists of
building the photon maps using photon tracing. When a
photon is traced within a participating medium, it can ei-
ther pass unaffected through the medium, or an interaction
can occurs (be scattered or absorbed). If the photon inter-
acts with the medium, and does not come directly from a
light source, it is stored in the photon map. The cumulative
probability density function, F (x), expressing the probabil-
ity of a photon interacting with a participating medium at
position x is:

F (x) = 1− τ(xs, x) = 1− e−
∫ x

xs
κ(ξ)dξ, (20)

where xs is the point at which the photon enters the
medium. The transmittance τ(xs, x) is computed us-
ing ray marching.

There is difference when calculating the density in the
participating media. The density on a surface is computed
using the projected area and the density in a medium is com-
puted using the full volume, as shown in Figure 4. Once
done the storage pass, we can use the photons stored in
the volume photon map to compute an estimate of the in-
scattered radiance:

Li(x, ~ω) ≈ 1
σ(x)

n∑
p=1

f(x, ~ω′
p, ~ω)

∆Φp(x, ~ω
′
p)

4
3πr

3
, (21)

where Φ is the in-scattered flux. Using (21) we can compute
a radiance estimate at any given point inside a participating
medium.

Figure 4. Radiance estimate for: (a) surfaces
and (b) volumes. Source [27]

8. Proposal and Experimental Results

In this section we firstly present some results for the
three-dimensional FHP rendered with a volume rendering
technique, the single scattering method, available in the
PBRT library (http://www.pbrt.org/). Then, we show two-
dimensional results obtained by our team and discuss their
extensions to 3D in the context of this work. The corre-
sponding videos can be found in: http://www.lncc.
br/˜sicilia/assuntosAfins_pesquisa.htm.

8.1. Three-Dimensional FHP

Firstly, we highlight the simplicity and low computa-
tional cost of the FHP. Figure 5 shows an initial configu-
ration with a volume of gas in the domain (semi-sphere in
the top of the box).

The initialization is a very simple process: Firstly, the
grid nodes inside the sphere are detected. Then, for each
node detected, the algorithm randomly chose the quantity
of particles and its directions.

Figure 6 shows a similar system, with the same initializa-
tion, but now using a solid sphere out of the fluid domain. It
is used only to highlight transparency effects.

8.2. Gas-Fluid and Fluid-Surface Interactions

In [20] we combine the FHP and SPH to animate 2D
two-phase systems composed by a gas simulated through
FHP and a liquid modeled by SPH. The first point is how
to model the interactions between the two phases in the in-
terfacial area. For simplicity, in [20] we proceed as follows:
given a point ~r in the interfacial area at a time t, we take a
neighborhood and compute the particles mean velocity ~um
through an expression similar to equation (12). Then, we set

http://www.lncc.br/~sicilia/assuntosAfins_pesquisa.htm
http://www.lncc.br/~sicilia/assuntosAfins_pesquisa.htm


(a) (b)

(c) (d)

Figure 5. Configurations of the volume gas:
(a) at initial step; (b) after 10 steps; (c) after
20 steps; and (d) after 50 steps of simulation.

the interaction force as:

~Fint = τ~um(r, t), (22)

where τ is force scale parameter. This approach is more in-
tuitive than the other ones [17] and allows the generation of
interesting visual effects. Figure 7 shows examples of gas-
liquid systems with the forces in the interfacial area given
by expression (22). This figure shows a stream of 1000
particles with vertical macroscopic velocity and the liquid
(blue) just before interaction.

The extension of this methodology to 3D depends on the
following steps: (1) Three-dimensional FHP and SPH; (b) A
model for the surface area and surface tension; (b) A suit-
able rendering technique.

Our team have implemented the SPH 3D presented
in [34] and the three-dimensional FHP was described in
section 5. The interfacial surface/tension model will also
follows that reference. The interfacial surface is defined
through the smoothed color field given by:

cs (r) =
∑
j

mj
1
ρj
W (r− rj , h) ,

where mj is the mass and ρj is the density of the particle j
and W is an interpolation kernel of size is h [30]. A point
belongs to the interface between the fluid and the gas if:

(a) (b)

(c) (d)

Figure 6. Configurations of the volume gas,
with a solid sphere out of the system: (a)
at initial step; (b) after 10 steps; (c) after 20
steps; and (d) after 70 steps of simulation.

‖∇cs‖ > T, (23)

where T is a pre-defined threshold. Following such ap-
proach the force distribution in the interfacial can be com-
puted through the expression [43]:

M = σ∇2cs∇cs. (24)

Finally, we must considerer a suitable rendering tech-
nique. Our choice is the photon map method because it pro-
vides effects like color bleeding, soft shadows, indirect il-
lumination and caustics, which is very important in scenes
with participating media. Firstly, we will use the implemen-
tation available in the PBRT library. Next we will imple-
ment a customized version of the photon map to get per-
formance for real time applications. We could try to simu-
late both the phases through a Lattice Gas Model. However,
a known problem of such approach is that no mathemati-
cal understanding is gained of which parameters lead to de-
sired behaviors. Thus, the use of Navier-Stokes for the liq-
uid modeling aims to allow standard ways to control the
system.

The interaction between fluids and surfaces will be de-
veloped in two aspects: (1) Interaction between gas and a
deformable surface. (2) Precipitation in terrain models.



(a) (b)

(c) (d)

Figure 7. Configurations of liquid-gas: (a) at
initial step; (b) after 15 steps; (c) after 25
steps; and (d) after 50 steps of simulation.
Source [20]

In both cases, the fluid will be simulated by the three-
dimensional FHP and the surface by a polygonal mesh. The
first point is the collision detection. The system must be
able to detect the collision between the particles of the FHP
model and the surface. Once the surface is immersed in the
FHP framework we just perform the rasterization of the sur-
face in the FHP lattice and mark the obtained nodes (set a
flag to 1). So, when a FHP particle reaches such a node of
a rigid suface, it is just a matter of reflecting the particle
following the FHP rules stated in section 5. The Figure 8
shows an example of this method for a sphere immersed in
the three dimensional fluid simulation framework proposed
in section 5.

If we have a deformable surface modeled by the Mass-
Spring system described in section 6 then, for each node
of the surface, we apply expression (22) to compute the in-
teraction force and add this force in expression (17). After
each time step of the Mass-Spring algorithm, we must re-
build the rasterization of the surface in the FHP lattice.

Finally, we aim to explore the three dimensional FHP
model in the framework developed by our team for sur-
face flow animation in digital terrain models [3]. The sur-
face flow simulation follows a particle model, inspired in
the LGCA technique, described in [3]. The basic data struc-
tures of the model are a polygonal representation of the
surface and a regular lattice with nodes (i, j) ∈ L × L,
where L ⊂ IN. Particles move according to the terrain sur-

(a) (b)

(c) (d)

Figure 8. Configurations of a rigid sphere im-
mersed in 3D FHP: (a) at initial step; (b) af-
ter 40 steps; (c) after 80 steps; and (d) after
90 steps of simulation.

face topography and the fluid configuration nearby. There is
a counter in each lattice node used to keep the number of
particles in the corresponding (i, j) position. A node may
contain more then one particle in this model. The Figure 9
shows some snapshots of a simulation using this technique.

In this work we will embed the framework described in
[3] in the 3D FHP framework (section 5) in order to simu-
late precipitation over terrains. The terrain surface is consid-
ered as a rigid one, so, the procedure for detection of colli-
sion between the particles of the FHP model and the terrain
surface follows the idea also explained above. Given a lat-
tice node (i, j), we take a neighborhood of the correspond-
ing surface point (i, j, z) and check the fluid density com-
puted in the 3D FHP model. This quantity is used to quan-
tify the precipitation value in the (i, j, z) point of the ter-
rain.

9. Conclusions and Future Works

The main goal of our work is the development of a com-
putational framework to create realistic animations of three
dimensional systems involving gas-liquid and fluid-surface
interactions. In this paper we propose to combine FHP, SPH
and Mass-Spring systems for simulation tasks and photon



(a) (b)

Figure 9. Configurations of simulation of flow
in a terrain model: (a) at initial step; and (b)
after 2500 steps of simulation. Source [3]

map realistic rendering. We discuss the theoretical elements
of our proposal and present some experimental results. We
do believe that the computational efficiency of the applied
methods will generate a useful framework for real time ap-
plications, like games and virtual reality.
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