
Image-Based Techniques for Surface Reconstruction
of Adaptively Sampled Models ∗

Ricardo Marroquim
ricardo@lcg.ufrj.br

Universidade Federal do Rio de Janeiro

Paulo Roma Cavalcanti
roma@lcg.ufrj.br

Universidade Federal do Rio de Janeiro

Abstract

Image based methods have proved to efficiently render
scenes with a higher efficiency than geometry based ap-
proaches, mainly because one of their most important ad-
vantages: the bounded complexity by the image resolution,
instead of by the number of primitives. Furthermore, due
to their parallel and discrete nature, they are highly suit-
able for GPU implementations. On the other hand, during
the last few years point-based graphics has emerged as a
promising complement to other representations. However,
with the continuous increase of scene complexity, solutions
for directly processing and rendering point clouds are in
demand. In this paper, algorithms for efficiently rendering
large point models using image reconstruction techniques
are proposed. Except for the projection of samples onto
screen space, the reconstruction time is bounded only by
the screen resolution. The method is also extended to inter-
polate other primitives, such as lines and triangles. In ad-
dition, no extra data-structure is required, making the strat-
egy memory efficient.

1. Introduction

The area of point based graphics has grown during the
last decade, reaching a high level of acceptance among the
computer graphics community. With the advent of high-
resolution registration equipments, such as 3D scanners, its
importance became apparent as methods that could directly
deal with the provided data. Furthermore, since scene com-
plexity increases in a much higher rate than the output de-
vices’ resolution, the usefulness of some traditional repre-
sentations were put on doubt for a set of applications.
Nevertheless, point-based graphics is still an emerging

area. By far its goal is not to replace other representations,
such as polygonal meshes, but to complement them where

∗ This paper contains extracts of the D.Sc. thesis “Interactive Point-
Based Rendering” by the first author.

it is advantageous. With a dedicated symposium during the
last five years, devoted sessions in the most important com-
puter graphics conferences, and a recently released point-
based graphics book [6], the area has broadened its scope
and embraced techniques on various fields, e.g., 3D acqui-
sition, surface reconstruction, processing & modelling, ren-
dering, and animation.
The main advantage of the point-based representation is

its lack of explicit connectivity information. Each sample
contains all information necessary for processing and ren-
dering, implying in a few benefits: first, memory space is de-
creased, since there is no need to store connectivity; second,
during processing and modelling connectivity and topolog-
ical restrictions do not have to be preserved; third, there is
no need for surface reconstruction from the point cloud, for
example, to generate a polygonal mesh; and finally, as the
geometric primitive approaches the image primitive, i.e., a
point and a pixel, valuable gains can be obtained by exploit-
ing the rendering pipeline.
This work is mainly focused on rendering techniques for

point-based models. The first researches evolved from the
image-based rendering field, but quickly became an inde-
pendent area itself. Surface Splatting is today the most pop-
ular method for the direct rendering of unstructured point
clouds. However, it has long distanced its foundation from
the image-space techniques premises. It is at this point that
we advocate such methods to reclaim one of its most im-
portant contributions: the decoupling of the algorithm cost
from the scene complexity.
We direct our attention to the visualization of large data-

sets, varying from a few hundred thousand to a few mil-
lion samples, where we believe point representation is more
valuable. This is specially true, since for very dense models
triangles are projected to less than one pixel, causing an un-
necessary overhead due to the primitive assembly process.
The main contributions of this work are:

• An efficient algorithm for surface reconstruction
of point-based models using image-based tech-
niques. This work was published at the Symposium on
Point-Based Graphics 2007 [12].



• The extension of the previous algorithm to deal with
other primitives using the same pipeline. The possibil-
ity to render models with triangles, lines, or points fur-
ther demonstrates the usefulness of the method. As a
proof of concept, a scheme for rendering tree models
using lines is described, where not only fewer prim-
itives are needed, but performance is improved. This
work was published in the Computer & Graphics Jour-
nal [13].

• Further investigation of the screen-based surface re-
construction has led to new insights on how to improve
the rendering quality. By creating a more exact recon-
struction strategy, silhouettes and details are better pre-
served, while the performance is not significantly de-
graded. This work is to be published at the Sibgrapi
2008.

• Finally, we investigate the use of Level-of-Detail struc-
tures to improve the performance of the point projec-
tion phase (the only that depends on the number of
samples). A first effort using recent GPU techniques
is to be presented at the Siggraph 2008 posters ses-
sion.

2. Related Work

The pioneer work on point-based rendering by Levoy
and Whitted [11], proposed the conversion of any repre-
sentation to points. In this manner, a standardized render-
ing algorithm could be employed using points as the Lin-
gua Franca of computer graphics. Even if it did not cause
much impact at the time, in a sense, they anticipated one
of the reasons point-based representation has become popu-
lar recently: the continuous increase of visual complexity of
graphics scenes. More than ten years later research on point
based rendering was resumed, but this time coming from
a different source, image-based techniques. For this reason
here we present relevant related methods on both areas, al-
lowing for a more thorough understanding of this work’s
motivations and purposes.

2.1. Image-Based Rendering

The area of image-based rendering is overlapped by sev-
eral others, such as image-space and image-processing tech-
niques. Here, we classify image-based as an approach that
uses the image as graphics primitives, instead of the tra-
ditional geometric primitives. This classification is impor-
tant, since methods such as ray tracing are accomplished in
image-space, but rely heavily on the model’s geometry, that
is, are physically based.
The main motivation comes from photorealism: if the

goal is to render images with photo quality, then why not

use it as the input primitive? However, even though a pho-
tography offers an enormous quantity of information about
structure and appearance, it is still a static image. Image-
based rendering is mainly about solving the following prob-
lem: given a set of static images describing the scene, how
can new viewpoints be efficiently extracted to provide a dy-
namic high quality setting?
Two algorithms, which were developed almost simulta-

neously, describe appropriately the use of images as prim-
itives: the “Light Field” by Levoy and Hanrahan [10], and
the “Lumigraph” by Gortler et al. [5]. They are both based
on the use of the plenoptic function to describe the rays
of light traversing a scene. The full 7D plenoptic func-
tion is defined as the intensity of light rays passing through
the camera center at every 3D location (Vx, Vy, Vz), at ev-
ery possible angle (θ, φ), for every wavelength λ, at every
time t, i.e., P7(Vx, Vy, Vz, θ, φ, λ, t) [9]. The authors real-
ized that this function could be reduced to 4D by parame-
terizing the rays as a line intersecting two planes, one be-
ing the camera plane and the other the object plane. By us-
ing the 4D function P4(u, v, s, t), it is possible to treat the
scene as a volume, where each specific viewpoint is char-
acterized by the extraction of a 2D image from the 4D vol-
ume.
As the area evolved, it strayed away from a pure appear-

ance based approach; new algorithms emerged adding geo-
metric information to the image primitives (in fact, Lumi-
graph already used some geometric hint to accomplish bet-
ter depth tests). Techniques such as Billboards and Depth
Sprites use some geometric information to efficiently ren-
der dynamic scenes with few images. These strategies were
specially employed in the game industry to add details to
the environment, without having to resort to complex geo-
metric models.
However, to provide a fully interactive environment, or

a system able to render the scene from any viewpoint, it
is necessary to turn to more complex structures. 3D Warp-
ing uses multiple reference images from a scene and stores
depth information per pixel. To render an arbitrary scene,
the pixels are reprojected to 3D space and then projected to
the new viewpoint.
In the same sense, Shade et al. [18] proposed the Lay-

ered Depth Images, or LDIs. Basically, it is the use of a
single reference image with multiple color and depth infor-
mation per pixel. To render from a new viewpoint, the ref-
erence image’s pixels are projected to the new reference.
However, this method is limited by its fixed resolution, im-
plying that the sample density may not be convenient for ev-
ery viewpoint. To overcome this problem, Chang et al. [3]
proposed the LDI Trees, using an octree with an LDI stored
per node. In this way, each pixel is stored in different reso-
lutions and can be dynamically selected to compose the fi-
nal image.



2.2. Point-Based Rendering

Following Levoy and Whitted’s [11] initial pro-
posal to use points as graphics primitives, Grossman and
Dally [7] derived a point-based rendering system from pre-
vious image-based techniques. In fact, the idea was not yet
to render point clouds, but to project the point data onto uni-
form structures, i.e., reference images. However, differently
from 3DWarping, each sample also stores a normal, adding
surface variational information. This is specially impor-
tant because, with view-independent samples, it is not only
possible to eliminate much of the redundancy from previ-
ous approaches, but also to compute dynamic illumination.
The “pull-push” image-processing technique is em-
ployed to fill holes left by the reconstruction algorithm, that
are usually caused by insufficient sampling under magnifi-
cation.
The Surfels approach, by Pfister et al. [15], uses a sim-

ilar methodology as the previous algorithm. However, in-
stead of reference images, an LDI Tree is created. In addi-
tion, the samples are splatted onto the image buffer to per-
form a depth test. Nevertheless, they also make use of the
“pull-push” algorithm to fill holes between the splats.
Surface Splatting [23, 24, 22] is today the most popu-

lar point-based renderer. It proposes to directly render un-
structured point clouds by projecting to image space a sur-
face patch, representing the sample’s local approximation.
These projections are called reconstruction kernels, and to-
gether with an anti-aliasing filter, compose the frame buffer
by computing the contribution to every covered pixel. In a
last phase, all contributions per pixel are weighted averaged
to render the final surface reconstruction of the object.
Motivated by the high quality images provided by Sur-

face Splatting, efficient implementations were proposed us-
ing modern GPU techniques [17, 2, 1, 8]. The main lim-
itation of these algorithms is the impossibility of using the
graphics hardware pipeline to perform the necessary ternary
depth test. This test includes not only the visible/occluded
traditional options, but also an extra merge configuration
to allow splat composition of pixels on the same surface.
In this way, GPU implementations relied on a two-pass ap-
proach: one for visibility and another for rendering. More
recently, Zhang and Pajarola [20, 21] proposed a one-pass
approach, but it depends on complex structures to separate
the splats in non-overlapping groups.

3. Point Rendering Using Image Reconstruc-
tion

We propose to extend the use of image processing tech-
niques used in early point-based works, to directly render
unstructured point clouds. As will be shown, image recon-
struction offers a complexity advantage over splatting, since

it is independent of the number of samples and their sizes.
Furthermore, differently from other image reconstruction
approaches for point based models, no extra data structure
is needed, thus, much less restrictions on sampling density
or uniformity are imposed.
An overview of the proposed Pyramid Point Renderer

(PPR) algorithm is depicted in Figure 1. The input data is
an unordered set of three-dimensional points with attributes,
which are projected to the viewport. Each projection is ras-
terized as a single pixel. Then, by means of a pull-push in-
terpolation the continuous surface is reconstructed. In a last
pass, deferred shading is applied. These steps are described
in the following subsections.

3.1. Point Projection

A point is projected to the viewport, and rasterized as a
single pixel. Each point contains, apart from its three dimen-
sional coordinates, a surface normal and a radius indicating
the local sampling density. These attributes are enough to
reconstruct the surface in image space. However, extra at-
tributes such as color or texture coordinates can also be in-
terpolated. During projection, backface culling is applied,
as well as a depth test to deal with multiple projections onto
the same pixel.

3.2. Pull-Push interpolation: Pull Phase

The pull-push algorithm was employed by Ogden et
al. [14] to interpolate scattered data in two-dimensions.
Its main purpose was to reconstructed missing pixels or
patches from images. It was later employed in the Lu-
migraph pipeline [5], and following, in early point-based
methods [7, 15]. The algorithm was recently adapted to the
GPU by Strengert et al. [19], achieving interpolation times
of a fewmilliseconds for high resolution settings, i.e., 10242

and 20482. The pull phase consists of building a hierarchi-
cal pyramid of the image by reducing its dimensions by a
factor of two. In the subsequent push phase, the pyramid is
traversed from top to bottom synthesing missing informa-
tion, i.e., empty pixels.
During the pull phase, the pyramid is constructed by cre-

ating coarser resolutions of the framebuffer containing the
projected samples. In each step, a coarser pixel is computed
by averaging the corresponding four pixels of the finer level.
However, only valid pixels are included in the average, that
is, pixels that contain sample projections. If all four pix-
els are invalid, the coarser pixel is also marked as so and
left to be reconstructed during the next phase.
A sample’s projected attributes represent an ellipse in

two-dimensions. In other words, it is the projection of the
circular extent of the sample in object space. Since the radii
are usually very small, the circle is orthogonally projected,



3D points with attributes
�position, normal, radius, etc.�

projection

scattered pixel data
�depth, normal, radius, etc.�

interpolation

continuous pixel data
�depth, normal, etc.�

shading

image of surface
�depth and color�

Figure 1. Data flow in the proposed point-based surface rendering technique.

(a) (b)

Figure 2. (a) A merge of two ellipses. (b) The
displacement vector summed after three iter-
ations of the pull algorithm, where p0 is the
original projected sample at the center of the
ellipse, p1 is the pixel at level 1, and so forth.
The dotted line represents the displacement
vector for p3 at level 3.

instead of perspectively, without introducing significant er-
rors. Furthermore, an early depth test is employed to dis-
card occluded samples. This is done by comparing the depth
component for each sample to be averaged with the front
most sample. Occluded pixels are not included in the aver-
age, and are left to be recomputed during the push phase.
A displacement vector is the last information stored per

pixel. It indicates the 2D distance from the pixel’s center to
the center of the stored ellipse. An example of the evolu-
tion of the displacement vector during the pull phase is il-
lustrated in Figure 2.

3.3. Pull-Push interpolation: Push Phase

Once the pyramid has been built from bottom to top, the
push phase reconstructs the missing pixels in the opposite
direction. Each invalid pixel computes its value by aver-
aging up to four corresponding pixels in the immediately
coarser level. An inside/outside test is carried out to deter-
mine if a coarser pixel will be used in the averaging scheme,
i.e., if the pixel is inside its elliptical extent. The new at-

tributes are interpolated by averaging the coarser valid pix-
els, weighted by the elliptical distance from the pixel to the
ellipse’s center. This is similar to the elliptical kernels used
in Surface Splatting.
As in the pull phase, a depth test is also employed here. It

is applied to the valid pixels in order to determine if they are
occluded and must also be recomputed. The pixel’s depth is
tested against the depth interval of the pixel directly above
it in the pyramid.

3.4. Deferred Shading

After the push phase has been performed for all levels,
the highest resolution level contains interpolated attributes
for all pixels considered to be inside the reconstructed sur-
face. Since each pixel has a normal vector, Phong shad-
ing can be computed in a O(n) pass, where n is the num-
ber of pixels. If other attributes were also interpolated, such
as color or texture coordinates, they can be included in the
shading computation. Figure 3 illustrates the buffer contain-
ing the interpolated normals and the final image with de-
ferred shading; while Figure 4 depicts the head model with
and without per vertex color interpolation.

(a) (b)

Figure 3. The normal map (a) generated by
the pull-push algorithm, and the resulting im-
age (b) after per-pixel shading.



Without Color Buffer With Color Buffer

model # points fps time per frame∗ fps time per frame∗

Armadillo 173K 89 11ms (1.2ms, 8.5ms) 46 22ms (1.5ms, 18ms)
Dragon 437K 78 13ms (2.2ms, 8.9ms) 44 23ms (2.9ms, 18ms)

Happy Buddha 544K 76 13ms (2.6ms, 8.8ms) 42 24ms (3.4ms, 18ms)
Asian Dragon 3610K 36 28ms (18ms, 8.3ms) 23 45ms (25ms, 17ms)
Thai Statue 5000K 29 35ms (25ms, 8.2ms) 18 55ms (34ms, 18ms)

Table 1. Models and rendering performance. ∗Each total rendering time per frame is followed in
parentheses by the time for the point projection and the time for the pull-push interpolation (all ren-
dering times are in milliseconds).

(a) (b)

Figure 4. Deferred shading with (a) con-
stant material color and (b) per-vertex diffuse
color.

3.5. Results

We tested our algorithm on a GeForce 8800 GTS with
640MB memory with an Intel Core 2 Duo 6600 CPU (2.4
GHz) with 2GB RAM. The models were preprocessed to
compute a normal vector and a radius of influence of each
point.
Rendering times for several point-based models are sum-

marized in Table 1, while exemplary renderings of these
models are depicted in Figure 5. The fourth and sixth
columns of Table 1 present rendering times in milliseconds
without and with interpolation of a surface color, respec-
tively. Apart from the total time per frame, two times in
parentheses are also included: the time required for the pro-

jection of points, as described in Section 3.1, and for the
pull-push interpolation, discussed in Sections 3.2 and 3.3.
As expected, these two operations require most of the ren-
dering time while other operations, e.g., the deferred shad-
ing, are almost negligible. Note that the interpolation time
is nearly constant for all models. All renderings where per-
formed with a 1024 × 1024 viewport.

For large models without interpolation of surface color,
our implementation renders the equivalent to about 130 M
splats per second, including surface reconstruction and de-
ferred shading. If the surface colors are included, the ren-
dering performance is reduced to about 90 M splats per sec-
ond.

Our previous implementation using a GeForce 7800
GTX achieved the equivalent to between 50 M and 60 M
splats per second. For comparison, Zhang and Pajarola [20]
reported a performance of up to 24.9 M splats per sec-
ond, and Guennebaud et al. [8] reported 37.5 M splats per
second, both for the same viewport size on the same GPU.

4. Line Rendering Using Image Reconstruc-
tion

The work presented in Section 3 was extended to in-
clude line strips as rendering primitive. More specifically,
two new types are included: flat line strips (ribbons) and
cylindrical line strips (tubes). These two primitives are not
only illuminated using different methods, but are also re-
constructed differently using the pyramid algorithm. An
identifier is included with the point sample to allow differ-
ent types of primitives to be rendered in a single pass. A
plant rendering system is described in Section 4.3 to exem-
plify the use of line primitives.



(a) (b)

Figure 5. Renderings with our method of the
(a) Asian Dragon and (b) Thai Statue.

4.1. Ribbons

In order to use the PPR algorithm to render flat line
strips, or ribbons, they must be represented as projected
samples in image space. This is achieved by rendering poly-
lines, where each point is attributed with the local normal
vector of the ribbon’s surface, and half its width as the
radius parameter. The rasterized polyline generates a se-
quence of pixels representing point samples. The scheme
is depicted in Figure 6. However, in contrast to the point
samples described in the previous section, backface culling
is not employed to ribbons. Furthermore, lightning must be
computed for both sides.

(a) (b)

Figure 6. (a) Representation of a ribbon by a
polyline consisting of five vertices with nor-
mals and radii. (b) Illustration of the rasteriza-
tion of a one-pixel-wide polyline correspond-
ing to the centerline of a ribbon. Normals and
radii are interpolated for each pixel covered
by the polyline.

4.2. Tubes

Tubes represent bended cylinders of varying width and
curvature, as illustrated in Figure 7a. The tube’s centerline
is approximated by a polyline, where each vertex has radius
equals half the diameter, and normal with the same direction
as the tangent vector. Differently from ribbons and point-
based surfaces, the interpolation algorithm always consid-
ers the normalized vector to the camera center as the sur-
face’s normal vector. As shown in Figure 7, this procedure
renders disks parallel to the view plane approximating the
width of the projected tube.

(a) (b)

Figure 7. (a) Representation of a tube where
each vertex stores a tangent vector and ra-
dius. (b) Illustration of the rasterization of a
tube’s polyline.

The deferred shading of tubes uses a basic approach for
diffuse illumination of a line by a single light source. A sur-
face normal n is determined by projecting the light vector l
onto the plane orthogonal to the tangent vector t.

4.3. Example: Leaves and Branches

The use of lines is exemplified using a tree model, where
branches are approximated by tubes and leaves by ribbons.
The apple tree model from the pbrt book [16] is initially
converted from polygons to lines. Leaves are converted
from four triangles and six vertices to a polyline with four
vertices; on the other hand, rings of the branches are heuris-
tically determined to create the representing polylines. Fig-
ure 8 illustrates the conversion strategy.
The leaves were converted from 200K triangles and

451K vertices to 150K ribbons with 200K vertices. Like-
wise, 351K triangles and 371K vertices representing the
branches, resulted in 63K tubes with 69K vertices. Only the
227 trunk triangles were not converted, since tubes are not
appropriate for representing thick structures. The direct ren-
dering of triangles using the pyramid algorithm is further
discussed in Section 5.
The full original and line-based models are presented in

Figure 9. Our implementation achieves 31fps against 28fps
of the triangle model. However, as the number of primitives



(a) (b)

Figure 8. (a) Illustration of the conversion of
a leaf (a) and a branch (b) to polylines.

increases so does the difference, e.g., the pyramid algorithm
renders 10 trees in 15fps, while the traditional triangle ren-
derer achieves 9fps. In addition, only about one third of the
vertices are required for the tubes and ribbons representa-
tion.

5. Combining Points, Lines, and Polygons

As stated in Section 1, points complement other rep-
resentations; it is unlikely one primitive is optimal for
all elements of a scene, and LOD strategies may benefit
from switching primitives dynamically. Fortunately, our al-
gorithm can easily combine different primitives using the
same rendering pipeline.
Apart from points and lines, triangles can also be ren-

dered within the pyramid approach. The vertices are as-
signed normals as usual, and a radius size close to zero.
When a triangle is rasterized, fragments are generated as
point samples with radii limited to one pixel, that is, they
will not expand during the interpolation. Since the perfor-
mance of the pull-push is independent of the number of
samples, this imposes no overhead. An example of models
represented by different primitives is shown in Figure 10.
Even more, hybrid models containing different types of

primitives can be similarly rendered. This allows, for exam-
ple, for a smooth transition between primitive types when
working with multiresolution hierarchies. Figure 11 illus-
trates an example of an hybrid model.

6. Pyramid with Templates

In this section, a new solution based on the pyramid
structure is describe to render smoother and more precise
silhouettes. This improves on one of the weakest points
of the pyramid point renderer: the discontinuity caused
by merging ellipses during reconstruction. The problem is
more evident at the silhouettes, because some ellipses are
only partially rasterized when they are not fully propagated
to the highest resolution level.
The only difference in the pull phase, is that each sample

is only available in one specific level. This is determined as

(a)

(b)

Figure 9. (a) The original triangle model and
(b) the line-based model.

the first level that can cover the elliptical extent with a tem-
plate of size k × k pixels. The correct level can be easily
computed using the following equation:

l = �log2

D

ts
�, (1)

where D and ts are, respectively, the projected radius and
the template size in pixels. In the same manner as the PPR
algorithm, ellipses are merged when needed. Note, however,
that less merging occurs since the ellipses are not propa-
gated to the coarsest level. Even more, the larger the ker-
nel the less they propagate, and consequently, the less they
merge.
During the reconstruction phase, analogous to the push

phase, each pixel in the highest resolution level searches
for projections in all coarsest levels. The search is carried
out only in a template of size k × k, and, for each projec-
tion found, the inside/outside test is performed. If the ellipse



Figure 10. Combined rendering of a point-
based model (Dragon) and a triangle-based
model (Buddha).

(a) (b) (c)

Figure 11. (a) A hybrid surface model with tri-
angles (blue) and points (red). (b) Rendering
of a detail and (c) illustration of the underly-
ing primitives.

covers the pixel its contribution is added. The scheme is de-
picted in Figure 12. Note that this strategy does not create
new ellipses during reconstruction, thus avoids discontinu-
ities, i.e., even if ellipses are merged during the pull phase,
the new ellipses are faithfully rasterized. In a last pass, de-
ferred shading is also employed.
The template strategy depends on the kernel size k,

which is a trade off between speed and quality. A 32 kernel
achieves performance similar to the pyramid point renderer
algorithm. However, since more ellipses merges more arti-
facts are noticeable. A 52 renders high quality results with
performance dropping approximately 40%. Kernel sizes
larger than 52 have not proven to increase the quality sig-
nificantly. A detail of the Armadillo model rendered with
different kernel sizes is shown in Figure 13, while a magni-
fied view of the Neptune model can be seen in Figure 14.
Even with a higher complexity than the original algo-

rithm, O(n log n) against O(n), this new strategy proves to
be a good alternative for high quality rendering. By raster-

Figure 12. The search coverage (dark gray)
for the projected pixel with a 32 search tem-
plate. Painted black is the same pixel repre-
sented in different resolutions.

Figure 14. Magnified view of the Neptune
model using a 5 × 5 kernel.

izing the ellipses in a more faithful manner, the results ap-
proach the Surface Splatting quality. In fact, if not for the
merges during the pull phase, they can, in practice, be iden-
tical.

7. Level-Of-Detail for Point Based Models

Image reconstruction of surfaces using point representa-
tion proved to be a valuable alternative to traditional meth-
ods, mainly because its cost is independent of the number



Figure 13. Same scene rendered with three different kernel sizes. From left to right, the kernel sizes
are 32, 52, and 72. Note how there is little qualitative gain between the 52 and 72 kernels, even though
the performance drops around 38%.

of projected samples. However, the projection phase is still
O(s), where s is the number of samples. Since the recon-
struction is carried out in a few milliseconds, the projec-
tion time must be decreased in order to improve perfor-
mance. One obvious way is to reduce the number of pro-
jected points. In this work, a Level-Of-Detail structure is
employed to determine which points are projected given a
viewpoint.
We introduce Object Texture to create our LOD struc-

ture. An Object Texture stores the object’s primitives
grouped in patches, where each patch is associated with
a single primitive that is actually sent to the GPU. To re-
trieve the entire object during rendering, each patch con-
tains information of where its first primitive is stored and
how many it contains.
The different resolution levels are created in a simple

manner by merging adjacent samples. Each sample in a
coarsest resolution level is created by combining up to
four adjacent samples from the immediate higher resolution
level. The number of levels is limited to four in this appli-
cation, however, this restriction can be easily extended. The
three highest resolution levels are stored in an Object Tex-
ture and ordered from coarsest to finest inside each patch.
The fourth level, with the coarsest resolution, contains the
vertices sent to GPU and used to reference the patches, thus
called patch vertices. These vertices are coarse resolution
samples containing some extra information: the texture co-
ordinates of the first vertex of the patch and the number of
vertices in each level.
Each merged sample stores a perpendicular error pre-

computed as in Sequential Trees[4]. This error estimates the
local surface smoothness prioritizing details along the sil-
houette, while, at the same time, taking into account the dis-
tance to the camera position. In the geometry shader, the er-
ror of the patch vertex (coarsest resolution) is projected and
compared with a threshold to decide which level should be

used. The chosen primitives are projected for rendering us-
ing the PPR algorithm, described in Section 3.
Since the geometry shader is still not fully optimized

in its initial releases, no significant improvement in perfor-
mance was noted. Yet, we expect that next generation GPUs
shall improve them enhancing the contributions of our LOD
structure. This deficiency is mainly attributed to a parameter
that sets the maximum number of primitives to be outputed
by the geometry shader. As this maximum limit increases,
even if it is not reached in practice, performance drops sig-
nificantly. The number of primitives sent to GPU was ap-
proximately one order of magnitude less than the model’s
samples.

8. Conclusions

With the growing complexity of scenes, new bearings are
needed for efficiently processing, modelling and visualizing
models. Point based representation is gaining an increasing
attention due to the evolution of registration devices. Even
though there exists methods for converting point clouds to
polygonal meshes, there are several advantages on working
directly with points for some applications.
This work presents an image reconstruction method for

direct rendering of unstructured point clouds. In general,
this approach is a good compromise between image qual-
ity and rendering performance for large models. One of its
most significant advantages is that the reconstruction cost is
independent of the number of projected samples. While the
projection phase does not share this characteristic, the com-
putation per sample is very small, thus interactivity is pos-
sible for millions of points. By extending the framework to
include other primitives, such as lines and triangles, we also
improve on the method’s applicability.
Even though it is not possible to fully profit from the

triangle specialized pipeline of graphics card, the simplic-



ity of points together with image based methods map ex-
tremely well to the GPU. This allows for efficient imple-
mentations and competitive performance.
The algorithm still lacks appropriate anti-aliasing tech-

niques. However, with the quality improvement gained from
the template kernels, much of the artifacts and flickering
from the original implementation have been eliminated.
In all, image-space techniques still have some draw-

backs, specially due to resampling problems. Nevertheless,
the field continues to prove its value by achieving high per-
formance rates while generating quality images.

9. Acknowledgments

We would like to acknowledge the grant of the first au-
thor provided by Brazilian agency CNPq (National Coun-
sel of Technological and Scientific Development), and all
published works co-authors: Martin Kraus, André Maximo,
Antonio Oliveira and Claudio Esperança.

References

[1] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-
quality surface splatting on today’s gpus. In PBG ’05: Pro-
ceedings of the Eurographics Symposium on Point-Based
Graphics, 2005.

[2] M. Botsch and L. Kobbelt. High-quality point-based render-
ing on modern gpus. In PG ’03: Proceedings of the 11th
Pacific Conference on Computer Graphics and Applications,
page 335, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[3] C.-F. Chang, G. Bishop, and A. Lastra. Ldi tree: a hierarchi-
cal representation for image-based rendering. In SIGGRAPH
’99: Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 291–298, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publish-
ing Co.

[4] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Se-
quential point trees. ACM Trans. Graph., 22(3):657–662,
2003.

[5] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The lumigraph. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 43–54, New York, NY, USA, 1996.
ACM Press.

[6] M. Gross and H. Pfister, editors. Point-Based Graphics. Mor-
gan Kaufmann Publishers, 2007.

[7] J. P. Grossman and W. J. Dally. Point sample rendering.
In Proceedings Eurographics Workshop on Rendering Tech-
niques ’98, pages 181–192, June 1998.

[8] G. Guennebaud, L. Barthe, and M. Paulin. Splat/Mesh
Blending, Perspective Rasterization and Transparency for
Point-Based Rendering. In IEEE/Eurographics/ACM Sym-
posium on Point-Based Graphics, Boston, USA, 29/07/06-
30/07/06, pages 49–58, http://www.eg.org/, 2006. Euro-
graphics.

[9] S. B. Kang, Y. Li, X. Tong, and H.-Y. Shum. Image-based
rendering. Foundations and Trends in Computer Graphics
and Vision, 2(3):173–258, 2006.

[10] M. Levoy and P. Hanrahan. Light field rendering. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 31–42,
New York, NY, USA, 1996. ACM.

[11] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical report, University of North Carolina at
Chapel Hill, January 1985.

[12] R. Marroquim, M. Kraus, and P. R. Cavalcanti. Efficient
point-based rendering using image reconstruction. In PBG
’07: Proceedings of the Eurographics Symposium on Point-
Based Graphics, pages 101–108, September 2007.

[13] R. Marroquim, M. Kraus, and P. R. Cavalcanti. Efficient Im-
age Reconstruction for Point-Based and Line-Based Render-
ing. Computer Graphics, 32:189–203, 2008.

[14] J. Ogden, E. Adelson, J. Bergen, and P. Burt. Pyramid based
computer graphics. RCA Engineer, 30:4–15, 1985.

[15] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In K. Akeley, ed-
itor, Siggraph 2000, Computer Graphics Proceedings, pages
335–342. ACM Press / ACM SIGGRAPH / Addison Wes-
ley Longman, 2000.

[16] M. Pharr and G. Humphreys. Physically Based Rendering:
From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[17] L. Ren, H. Pfister, and M. Zwicker. Object space ewa surface
splatting : A hardware accelerated approach to high quality
point rendering. Computer Graphics Forum, 21(3):461–470,
2002.

[18] J. Shade, S. Gortler, L. wei He, and R. Szeliski. Lay-
ered depth images. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques, pages 231–242, New York, NY, USA, 1998.
ACM.

[19] M. Strengert, M. Kraus, and T. Ertl. Pyramid Methods in
GPU-Based Image Processing. InWorkshop on Vision, Mod-
elling, and Visualization VMV ’06, pages 169–176, 2006.

[20] Y. Zhang and R. Pajarola. Single-pass point rendering
and transparent shading. In Proceedings of the Eurograph-
ics/IEEE VGTC Symposium on Point-Based Graphics ’06,
pages 37–48, 2006.

[21] Y. Zhang and R. Pajarola. Deferred blending: Image compo-
sition for single-pass point rendering. Computer & Graph-
ics, 31(2):175–189, 2007.

[22] M. Zwicker. Continuous Reconstruction, Rendering, and
Editing of Point-Sampled Surfaces. PhD thesis, Swiss Fed-
eral Institute of Technology, ETH, Zurich, 2003.

[23] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting. In Siggraph 2001, Computer graphics Proceed-
ings, pages 371–378, NewYork, NY, USA, 2001. ACMPress
/ ACM SIGGRAPH / Addison Wesley Longman.

[24] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa
splatting. IEEE Transactions on Visualization and Computer
Graphics, 8(3):223–238, 2002.




