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Abstract

Surface approximation from unorganized points belongs
to the state-of-art of computer graphics. In this work,
we present approaches for surface reconstruction that
are based on efficient numerical schemes for function
approximation from scattered data and on sophisticate
data structures. In addition, we develop a relevant
surface reconstruction method to model moving interfaces,
specifically, interfaces of numerically simulated multiphase
fluid flow. Finally, from our accumulated experiences
on numerical schemes and on the development of surface
reconstruction methods, we propose a matrix-free approach
for rendering arbitrary volumetric scattered data, which
presents interesting properties to be implemented on GPU.

1. Introduction

It is not difficult to find reasons for surface reconstruction
methods being a strong tendency in computer graphics.
First, despite significant advances, the manipulation
of complicate point clouds originated from arbitrary
geometries is an important issue that still requires
improvements. Second, several research areas have make
use of surface reconstruction methods, for instance, reverse
engineering, optimization and medicine.

In this work, we present our contributions to surface
reconstruction from unorganized points, whose their
developments were focused on novel moving-least-
squares and partition of unity implicits methods. It will
be noticed that our methods have common features of
having low computational cost (mainly regarding matricial
computations) and being robust. The use of efficient data
structures to aid the surface reconstruction is also in the
scope of our work [7, 9, 8, 10, 18, 6, 17]. In addition,
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we address a surface reconstruction scheme for the front-
tracking problem. An important contribution of such
scheme is the absence of Lagrangian meshes. In fact, it
is designed on the algebraic moving-least-squares method
and on a approach for Lagrangian advection of particles.
Finally, from our experiences on surface reconstruction
and function approximation, we also developed a method
for rendering scattered volumetric data based on a recently
proposed matrix-free approach.

In the following sections, we describe relevant details of
our approaches. Further information and comparisons can
be found in [7, 9, 8, 10, 18, 6].

2. Twofold Adaptive Partition of Unity
Implicits

We propose an approach based on partition of unity
implicits [8, 9] which combines an adaptive and algebraic
triangulation, named J a

1 [3], and a recursively defined local
approximation method based on multivariate orthogonal
polynomials [2].

Similar to other implicit methods for surface
reconstruction, the partition of unity implicits defines
the reconstructed surface as the zero set of a function
F , in a finite domain Ω, from a linear combination
of local approximations and weighting functions. For
that purpose, we define a set of nonnegative weighting
functions with compact support Φ= {ω1, . . . ,ωn}, satisfying∑n

i=0ωi (x) ≡ 1, x ∈Ω and we also consider a set of signed
local approximations F = { f1, . . . , fn}, which completely
define the function F :R3 →R:

F (x) ≡
n∑

i=0
fi (x)ωi (x), x ∈Ω. (1)

The partition of unity is then defined from a set of
nonnegative functions with compact support θ:

ωi (x) = θ(‖x−ci‖/Ri )∑n
k=1θ(‖x−ck‖/Rk )

, (2)



where ci and Ri are the center and the support radius of ωi ,
respectively, and θ(s) = (1−s2)4 if s < 1; θ(s) = 0 otherwise.

Thus, the implicit surface is given by S = {x ∈ R3 :
F (x) = 0}. Figure 1 illustrates a CSG operation between
Neptune model reconstructed from our method and a
cylinder.

Figure 1. A CSG operation from Neptune
dataset reconstructed using our partition of
unity implicits method and a cylinder [9].

Briefly, the main contributions of this approach are:
Adaptive isosurface extraction with topological
guarantee: in contrast to previous works, our method
is able to extract the isosurface directly from the data
structure which subdivides the space (the J a

1 triangulation).
In addition, since J a

1 triangulation is defined by tetrahedra,
the isosurface algorithm is not affected by ambiguous
cases.
Numerical stability: despite their simplicity, canonical
polynomial basis leads to ill-conditioned normal equations.
In order to avoid such an issue, we make use of the
multivariate orthogonal polynomial basis proposed
by Bartels and Jezioranski [2], which improves the
approximation quality without increasing the computational
burden.
Adaptiveness of the local fittings: the use of orthogonal
polynomials allows to increase the polynomial degree
recursively. For that reason, our method is not only adaptive

Figure 2. Twofold adaptiveness: Stanford Lucy
with 16 M points. Reconstructed model with 7 M
triangles. On the left, the color scale represents
the polynomial degree of the local approximation
in the surface. In the entire domain, the numbers
of polynomials with degrees one to four are 946601,
144956, 38236 and 26862, respectively. On the right,
the scale color represents the J a

1 triangulation
depth level, ranging from 6 to 10 in the surface [9].

with respect to the spatial decomposition, but also with
respect to the local fittings, defining a twofold adaptiveness.
Figure 2 illustrates such a twofold adaptiveness.
Robustness: we propose not only computationally
inexpensive, but also effective robustness criteria which
allow our method to produce better results than previous
works based on partition of unity implicits. In fact, our
method is less susceptible to generate spurious surfaces.
Mesh enhancement: the aspect ratios of the triangles
generated by the isosurface extractor based on the J a

1
triangulation, in general, are poor. For that reason, we define
a simple, but efficient procedure to improve the surface
mesh quality. This procedure is based on the displacement
of the J a

1 vertices [4]. Figure 6 presents a result attesting that
the mesh quality significantly increases. For quantitative
analyses, see [9, 6].
Interactive implicit function edition: in order to satisfies
the robustness criteria, details in some regions can be poorly
approximate, since low degree polynomials are used. On
the other hand, neglecting the robustness criteria is not
a convenient choice, since spurious surface and artifacts
can occur. In addition, increasing the restrictions on the
robustness conditions may cause undesirable smoothing of



surface details without ensuring that all imperfections will
disappear. Therefore, we developed an interactive implicit
function edition which allows to locally change the local
fittings without the need of re-computing completely the
implicit function (Figures 3-(e)–(f) and 4).
Sharp features modeling: finally, we also properly adapt
the scheme from Ohtake et al. [14] for detecting and
modeling sharp features to our twofold partition of unity
implicits method (Figure 5).

3. Front-tracking with moving-least-squares
surfaces

We propose a meshfree front-tracking method for
numerical simulation of fluid flows, where the interface is
represented by an algebraic-moving-least-squares (AMLS)
surface. Our method is interesting for being capable of
preserving mass and geometry as well as mesh-based front-
tracking methods [19] and being as flexible as level-set
methods [15].

Let us again consider a finite set of points
P = {p1, . . . ,pm} almost regularly spaced at a distance
h and {qk } an algebraic sphere basis [16], i.e., q1(x) =
1, q2(x) = x1, q3(x) = x2, q4(x) = x3, q5(x) = x2

1 + x2
2 + x2

3 ,
where x = (x1, x2, x3). Thus, we define a function fα(x)
whose zero level approximates P :

fα(x) =
5∑

k=1
αk qk (x) (3)

where α = (α1, · · · ,α5) are the coefficients which
completely defines fα and α satisfies:

α= argmin
β∈Q

m∑
j=1

w j | fβ(p j )|2, (4)

where w j = w(x) = θ
( ‖x−pi ‖

3h

)
, defining non-negative

weights (θ(s) = (1 − s2)4 if s < 1; θ(s) = 0 otherwise)
and Q = {

β ∈R5 :β2
2 +β2

3 +β2
4 −4β1β5 = 1

}
, being the

restriction used to ensure that fα(x) approximates the
signed distance of x to the surface fα ≡ 0.

The minimization (4) can be computed by a generalized
eigenvalue problem in R5 [11]. In addition, for each point
pi , the approximate normal is given by:

Ni =∇ fαi (pi )/‖∇ fαi (pi )‖. (5)

The sphere-fitting problem, previously described, can
be substantially improved by introducing the normals [11].
Furthermore, the introduction of normal in the minimization
problem allows the splitting of the problem in two main
steps. First, we compute the subset:

(a) (b)

(c) (d)

(e) (f)

Figure 3. Interactive function edition: (a)-
(b) present results from Ohtake et al. [14]
with their default parameters and those one
that we suggested, respectively; (c) our
method but not using the coverage domain
criterion [9]; (d) our method making use of
the coverage domain criterion; (e) selecting
surface artifacts; (f) the edited function
eliminates imperfections [9].



(a) (b) (c)

Figure 4. Reconstruction enhancement by the interactive function edition: (a) original result with low
degree approximations, (b) support selection for function edition (c) final result [9].

Figure 6. Mesh enhancement: Comparison between the mesh produced by the J a
1 triangulation

without the displacement vertices procedure (left) and the mesh produced by the displacement
vertices procedure (right) [9].

γ̂(x) = (γ2(x), . . . ,γ5(x)) of γ= (γ1, · · · ,γ5) finding:

γ̂(x) = argmin
β̂∈R4

m∑
i=1

wi‖∇ fβ̂(pi )−Ni‖2. (6)

where Ni is computed as previously described. Notice that
the solution γ̂(x) of (6) can be determined simply by solving
a 4×4 linear system.

Finally, the first term γ1 of γ is computed by:
m∑

i=1
wi |Fβ(pi )|2 (7)

where β̂= γ̂(x). Thus:

γ1(x) =−
∑m

i=1 wi
(∑5

k=2γk (x) qk (pi )
)∑m

i=1 wi
. (8)

We name such an approximation RAMLS-Robust
Algebraic Moving Least-Squares. It can be seen as an
improvement of the Guennebaud and Gross method [11],
since we eliminate the parameter that weighs the normal
restriction into the minimization problem (in fact, we
assume that the parameter β, in [11], as β→∞).



Figure 5. Sharp features detection and
modeling (Fan Disk dataset): in yellow are the
faces labeled as sharp edges, whereas in red
are the faces labeled as sharp corners [9].

Figure 7. The set of rays R and the points P (t )
(red) define the RAMLS surface S (t ) (green
curve). The new set of points P (t ) (purple)
is created at the intersections between R and
S (t ). The set of points is, thus, transported,
defining the set P (t+∆t ) (black points), which
will define the new surface RAMLS S (t +∆t ).

3.1. Point Advection

In order to update the RAMLS surface during the
simulation, we move the points P according to the velocity
field v. Mathematically, we solve the following equation:

dpi

d t
= v(pi (t ), t ) , (9)

where pi (0) are the initial points.
We denote by P (t ) = {pi (t )}i=1,...,m the set of points to

be advected from t to t+∆t (∆t is the time step). During the
transport, the points in P (t ) can become poorly distributed,
which could compromise the surface S (t ). In order to
avoid such an issue, we propose to re-generate the point set
periodically in a regularly spaced grid.
Re-generation points process: Let us consider a set of
regularly spaced rays R with spacing h (Figure 7). The set
of points P (t ) is transported along the trajectories given by
Equation 9. The point transportation is used to define the
new RAMLS surface. The intersections between R and the
surface define the new set of points P (t +∆t ). We depict
such a re-generation process in Figure 7.

It is important to mention that Equation 9 is solved by
the fourth-order Runge-Kutta method. A ray-tracing-like
algorithm is used to detect the intersections between R and
the RAMLS surface. Since points can be re-generated very
close, we remove points that are closer than h

2 . Finally,
the normals remains unchanged during the transportation in
order to be used to orient the new normals in P (t +∆t ).

Considering the convergence rates, for the two-
dimensional case, we are able to show that RAMLS
accomplishes order O(h3),O(h2) and O(h) for geometrical,
normal and curvature, respectively. Considering the three-
dimensional case, RAMLS achieves rates of O(h2) and
O(h) for geometrical and normal curvature, respectivelly.
During the transportation, the error is O(hr /∆t ), where
r = 2,3 according to the geometrical error, previously
argued.

For the Zalesak Sphere Test, we consider a sphere with
radius 0.15, slope with length 0.10 and width 0.20, centered
at (0.5,0.75,0.75) in a unity cube. The velocity field is given
by a rigid rotation:

v(x1, x2, x3) = π

314
(0.5−x2, x1 −0.5,0). (10)

We assume ∆t = 1 and a complete turn takes 628 time
steps. We show the geometry of the Zalesak spheres at the
times t = 0, 79, 157, 236, 314, 393, 471, 550 and 628 in
Figure 8. We adopt the mesh size h = 1/256, and the number
of particles as about 19000 for each time step. It can be
noticed that the sharp features become smooth along the
time, but the volume and shape remain similar [7, 6].

We also test our method to a three-dimensional
deforming problem. We consider a sphere as S (0) with



Figure 8. Zalesak sphere rotation (h = 1/256): (about 19000 points) and time steps t =
0,79,157,236,314,393,471,550 and 628 time units (from left to right and from top to bottom) [7].

radius 0.15, centered at (0.35,0.35,0.35). The computational
domain is the unity cube. The velocity field is given by:

v(x1, x2, x3) =
2sin2(πx1)sin(2πx2)sin(2πx3)
−sin(2πx1)sin2(πx2)sin(2πx3)
−sin(2πx1)sin(2πx2)sin2(πx3)

 .

At t = T /2 = 1 time units, we reverse the velocity field
in order to check the capability of the method in preserving
topology and geometry. Figure 9 presents results of such
a simulation, using h = 1/512, ∆t = 0.0064 and 628 time
steps.

4. Iterate Approximate Moving Least Squares
Surfaces

One of the challenges to develop efficient surface
reconstruction methods in modern GPU is the conformance
of numerical computations to textures [18], represented by
4×4 matrices.

When implementing a moving-least-squares surface
method, in order to achieve high order approximations, the
local approximations must be constructed by higher order
polynomial basis, and consequently, a single 4× 4 matrix
does not allow to achieve efficiently such a requirement.
Studies to select a reduced polynomial basis [18, 10] have
been done. However, the local approximation quality and
high order approximations are not ensured.



Figure 9. Three-dimensional torsion (h = 1/512): the number of points for each set is (from left to right
and from top to bottom): 65000,69314,109728,187571,277021,193238,114898,72774 and 68031 [7].

To overcome the matrix reliance, we propose an iterative
method based on the “iterate approximate moving least
squares – iaMLS” [5]. This method is interesting for being
able to enhance features simply by controlling the number
of iterations and the single smooth parameter ε. Formally,
let us consider a function F : R3 → R, which its zero set
approximates the surface. Let us also consider a set of points
xi , equipped with their normal vector ni . Thus, we define:

F (x) =
m∑

i=1
GiΨi (x), (11)

where Gi =< xi − x,ni >, Ψi (x) = ε3

π3/2 (ri (x))exp(−ri (x)),
ri = ‖x−xi ‖

h and h is the average spacing between the points

[6]. The functions Ψi are named second order generating
functions [5].

From these definitions, and making use of the iterative
process of the iaMLS [5], we define the iaMLS surface from
the following iterative process:

F (0)(x) =
m∑

i=1
GiΨi (x) (12)

F (n+1)(x) = F (n)(x)+
m∑

i=1

[
Gi −F (n)(xi )

]
Ψi (x), (13)

where F ≡ 0 gives the implicit surface reconstruction.



Figure 10. Effects caused by the number of iterations and the ε parameter. From left to right: 3,4 and
5 iterations. From top to bottom: ε= 0.4, ε= 0.8, ε= 1.22, ε= 2.0. The greater the number of iterations or
ε are, the more detailed the surface becomes.

Figure 10 depicts how the number of iterations and
the parameter ε affect the solution. Figure 11 presents
comparisons of our approach with other implicit MLS
surface methods. It can be noticed that, even using a
small number of iterations, we are able to enhance object
characteristics. We present comparisons assessing the
computational cost of this scheme [6, 17].

5. Volumetric approximation from
unorganized points

The last contribution of this work is related to
unorganized volumetric data rendering. In fact, the
goal is the definition of a method for rendering arbitrary
meshes, i.e., a unified approach that explores the iaMLS.
Firstly, in order to make the method more efficient for all
mesh types, we make use of anisotropic spaces. Notice that
the original iaMLS, to the best of our knowledge, does not
make use of any anisotropy scheme [6, 17].

Our method is also able to render isosurfaces from



Figure 11. Comparison among Adamson
and Alexa [1] (left), Kolluri [12] (middle)
and iaMLS [6, 17] (right) methods. We use
the same h parameter for each model. We
performed 3 iterations and ε= 0.8.

unorganized volumetric data. For that purpose, we also
apply the iaMLS to estimate the gradient function [6, 17].
In fact, it is required to define, for each mesh vertex xi ,
a gradient vector estimate, using a least-squares approach.
It is achieved by extending the approach by Mavriplis to
the three-dimensional space [13]. It is important to notice
that the use of such an approach remains our method
independent of meshes.

Let us consider a mesh vertex xi , in which we evaluate
the gradient, and its neighbors xk = (xk , yk , zk ) in its star Vi .
Thus, we minimize the following equation with respect to
∇ f (xi ) = (( fx )i , ( fy )i , ( fz )i ):∑

xk∈Vi

exp(−< xk −xi ,xk −xi >)(Ei k )2 (14)

where:

Ei k = (
( fx )i ·d xi k + ( fy )i ·d yi k + ( fz )i ·d zi k −d fi k

)
(15)

and d fi k = f (xk )− f (xi ). By the same token, d xi k = xk −
xi ,d yi k = yk − yi ,d zi k = zk − zi .

The gradient vector, in an arbitrary point x, indeed, is
given by the iterative process:

Q∇ f (x)(0) = ∑
xi∈X

∇ f (xi )Ψi (x), (16)

Q(n+1)
∇ f (x) =Q(n)

∇ f (x)+ ∑
xi∈X

[
∇ f (xi )−Q(n)

∇ f (xi )
]
Ψi (x). (17)

Another interesting feature of our approach is its
capability to be efficient for GPU implementation. We are

able to provide pre-computations, which are stored in GPU
textures. We perform two pre-computations based on the
iterative process of iaMLS. They are related to the function
evaluation and the gradient estimate.

Thus, we can rewrite the iterative process by Fasshauer
[5] as:

Q(n+1)
f (x) = ∑

xi∈X

[
f (xi )+

n∑
j=0

(
f (xi )−Q

( j )
f (xi )

)]
Ψi (x),

(18)
where, we can accumulate the results for each mesh vertex
as:

g (xi ) = f (xi )+
n∑

j=0

(
f (xi )−Q

( j )
f (xi )

)
, (19)

and store them in textures which accommodate the
unorganized volumetric data. Then, during the rendering,
the reconstructed function value is simply given by:

Q f (n+1)(x) = ∑
xi∈X

g (xi )Ψi (x). (20)

Rendering results are presented in Figure 12 for different
meshes. We use h = 0.25 and ε = 0.9. Both parameters are
chosen empirically after numerical tests.

Figure 12. Volumetric rendering of Blunt
Fin and Oxygen Post datasets. Isosurface
extracted from the Bucky Ball dataset [6, 17].



6. Conclusion

In this work, we presented novel and important
contributions towards the field of dynamic and static
surface reconstruction methods from unorganized points.

There are several ways to extend the techniques here
presented. First, we intend to investigate theoretically our
surface reconstruction method based on iaMLS.

With respect to the twofold adaptive partition of unity
implicits, we intend further to improve the function
edition process by incorporating new local approximating
functions. In addition, we want to improve the mesh
enhancement technique, making use of the whole scheme
by Dietrisch et al. [4], but, in our case, considering the
adaptiveness of J a

1 triangulation.
Considering the front-tracking with AMLS surfaces

approach, the definition of a good curvature from RAMLS
is a mandatory future work. In addition, we aim at applying
this surface representation for numerical simulation of
fluid flows. We are also investigating schemes to perform
topological changes efficiently.

Finally, we intend to investigate the possibility to
estimate automatically the parameters h and ε of the iaMLS
defined in anisotropic domains for volumetric rendering.
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