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Abstract

Warping techniques can be complicated and difficult to
use, but through the use of fluid dynamics the warping be-
comes simple and it is intuitively controlled by physical
properties such as viscosity and forces. These properties
are naturally associated with the image itself or with spa-
tial control handles. The key idea is to think of the im-
age domain as a two-dimensional incompressible and ho-
mogeneous fluid, and to use the Navier Stokes equations
to change it by applying forces to the image function. In
this way, the process does not move the image values as
in fluid simulations, but transforms the coordinates of a
parametrization of the image through a vector field gener-
ated by the simulation equations — effectively acting as a
texture mapping.1

1. Introdution

The process that changes the shape of objects in an im-
age is called warping. The use of warping plays an impor-
tant role in many applications, from the correction image
distortions in medical data to the creation of special effects
in the entertainment industry. Warping can also be used to-
gether with blending for creating transitions between differ-
ent objects, a technique known as morphing [7].
More formally, given an image, f : U ⊂ R

2 → C, the
mapping between source space (u,v) and destination space
(x,y) is called warping filter. Such a map, W (f) = g, acts
on the input image f(u, v) giving rise to an output image
g(x, y) that can be regarded as a deformation of the image
domain [8]. Furthermore, in the case of morphing, a com-
position operator combines the result of two synchronized
warping filters applied to different images.
Spatial transformations based on Navier-Stokes equa-

tions, and the use of fluid dynamics in general, present a
great potential in the above context because they are very
powerful to derive warping transformations. In the present
paper we develop a framework where such a technique is
exploited.

1 Extended abstract of doctorate thesis.

2. Related Work

There are manymethods for image warping. They can be
classified into: parameter-based; feature-based; free-form;
and hybrid [9].
Parameter-based methods are warping techniques con-

trolled by a family of transformations, such as scaling,
twisting, and bending. This type of technique was intro-
duced in Computer Graphics by Alan Barr[2].
Feature-based methods encompass a whole class of

warping techniques, which differ regarding types of geo-
metric features and reconstruction functions. In these meth-
ods a correspondence of features in the source and des-
tination objects must be provided by the user. Typical
reconstruction functions include scattered data interpo-
lation, inverse distance weighted kernels,and radial ba-
sis.
Free-form based methods use specification by coordinate

systems. For this purpose, they employ free-form curves (B-
splines, Bézier etc.) to define the coordinate curves [4].
The pioneer work using fluid dynamics in image process-

ing was introduced by Bertalmio et al. [10], with a method
for digital inpainting. They think of the image intensity as
a stream function and the Laplacian of the image intensity
plays the role of the vorticity of the fluid, which is trans-
ported into the region to be inpainted by a vector field de-
fined by the stream function. Even though their idea is based
on Navier-Stokes equations, our work is different. In our
technique, the fluid warping uses a vector field directly cre-
ated by the velocity of fluid by Navier-Stokes equations: we
neither use the stream function nor vorticity.
The proposed fluid warping technique carries the coor-

dinates of a parametrization of the image through of a vec-
tor field generated by the Navier-Stokes equations. Warp-
ing is controled by physical parameters associated with the
characteristics of the image itself or by other auxiliary im-
ages and applied to the dynamic simulation.
Depending on the application (for example in those al-

ready mentioned above) an important aspect of fluid warp-
ing is user control. Deformations are easy to specify using
fluid dynamics through physical properties, such as viscos-
ity and forces.



3. Fluid Simulation

In this section we present the fluid simulation setting
that will be adopted in our framework for image warping.
We are interested in modeling homogeneous, incompress-
ible fluids with variable viscosity. Such formulation gives a
good compromise between simplicity and expressive power.
Moreover, we require an efficient implementation, that al-
lows large time-steps, for this purpose we will employ the
Stable Fluids algorithm, extending it to handle variable vis-
cosity.

3.1. Mathematical Formulation

First we review some mathematical concepts for the def-
initionn of the fluid equations. The fluid is defined over a
region D ∈ R2. Let x = (x, y) be any point of D. Let
v(x, t) denote the velocity of the particle of fluid moving
through x at time t. The velocity field of fluid is denoted by
v and it is a vector field tangent to the trajectory of the par-
ticle. For each time t assume that the fluid has mass density
ρ(x, t). The fluid is called incompressible when

∇ · v = 0.

Assuming that the fluid has mass density constant in space
(i.e., the fluid is homogeneous) and that ρ is constant in time.
Then we have

ρ(x, t) = constant in particular ρ(x, t) = 1.

Let μ be the viscosity of fluid and p the pressure. Then for
constant viscosity, the basic Navier-Stokes equations for in-
compressible fluids are: (see [5])

∂tv = −�p− v ·�v + μ� v + f

∇ · v = 0.

(1)

where the ”·” denotes a dot product between vectors, while
� = (∂/∂x, ∂/∂y) is the vector of spatial partial deriva-
tives, ∂t is the partial derivative ∂

∂t

, and �· is the divergent.
We also adopt the notation �= � ·�.
For more expressivity, we want to consider changes of

viscosity in space and thus we have to formulate the Navier-
Stokes equations for variable viscosity. The equations are:

∂t = −�p− v · �v

+�μ(x)(�v + �v�) + μ(x)� v

+f

(2)

Where �v =

„
∂xv1 ∂yv1

∂xv2 ∂yv2

«
and �v� =

„
∂xv1 ∂xv2

∂yv1 ∂yv2

«

then

�v + �v
� =

„
2∂xv1 ∂xv2 + ∂yv1

∂yv1 + ∂xv2 2∂yv2

«
.

We will use the Helmholtz-Hodge Decomposition theorem,
where a vector field w on D can be uniquely decomposed
in the form

w = u + �q

such that u has zero divergence and q is a scalar field. If we
have w = u + �p, then

� · w = � · �q =� q, and w · n = �q · n = ∂q
∂n

= 0.

This is a Poisson equation for a scalar field with the Neu-
mann boundary conditions. A solution to this equation can
be used to compute u:

u = w − �q.

Now we define the operator P which projects any vector
field w onto its divergence free part u: � · u = 0 and
Pw = u.
P is a linear operator and thus w = Pw + �p, u = Pu,
P (�p) = 0. We apply the operator P to both sides of the
basic Navier-Stokes equations (1) and obtain

∂tv = P (∂tv + �p) = P (−(v ·�)v + μ � v + f). (3)

This form of equation eliminates the pressure and expresses
∂tv in terms of v alone. The pressure can then be recov-
ered as the gradient part of −(v · �)v + μ � v + f . In
the same way, we obtain for the variable viscosity Navier-
Stokes equation (2).

∂tv =

P (−(v · �)v + �μ(x)(�v + �v
�) + μ(x) � v + f)

(4)

3.2. Computational Method

Now we briefly review the Stable Fluids algorithm that
we adopt for the implementation of the fluid simulation. For
further details we refer to the original papers [16] and [17].
Since the algorithm was designed for fluids with constant
viscosity, we adapt it for our setting by developing an ex-
tension for variable viscosity fluids.
The algorithm solves the Navier-Stokes equations (4)

and it is unconditionally stable. This method is based on
an operator splitting strategy.
For each time step�t the algorithm solves the equations

in four stages, starting from a velocity field w0 = v(x, t)
of a previous time step and then sequentially resolving each
term of the equations. The stages are

w0

add force
−−−−−→ w1

advect
−−−−→ w2

diffuse
−−−−→ w3

project
−−−−→ w4



The first stage is the addition of external force f . It adds
the force field multiplied by the time step to velocity w1 =
w0 +�tf(x, t).
The second stage accounts for the effect of advection of

the fluid on itself. It is given by an advection equation

∂tw2 = −(w1 · �)w2

and is solved by using a semi-Lagrangian technique [6]

w2(x) = w1(x−�tw1(x))

The basic idea behind the advection step is, instead of mov-
ing the particle forward in time through the velocity field,
to move it backwards in time through the field and calcu-
late a new velocity by interpolation (guaranteeing stability).
The third stage solves for the effect of viscosity and is

given by equation

∂tw3 = μ � w3

it uses a simple implicit solver for the diffusion equation

(I− � tμ �)w3 = w2

where I is the identity operator. One way to solve this equa-
tion is to get the solution for system

Aw3 = w2

by using the Jacobi method.
The fourth stage projects the velocity field onto the in-

compressible (divergence free) field. This step also involves
the solution of a Poisson equation

� q = � · w3 and w4 = w3 − �q.

The methods used for solving this stage are finite difference
schemes and Jacobi.
We will extend the formulation above to solve our equa-

tion (2) using the same stages, except that because we as-
sume variable viscosity the diffusion stage will be different.
More precisely, the original Stable Fluids solve the equa-
tion

∂tw3 = μ � w3

and we have to solve the equation

∂tw3 = �μ(x)(�w3 + �w3
�) + μ(x) � w3.

To solve this step, let w3 = (w1, w2) and we write again
in this form{

w1
t = 2μxw1

x + μy(w
1
y + w2

x) + μ � w1

w2
t = 2μyw2

y + μx(w1
y + w2

x) + μ � w2.

where the sub-indices t, x and y denote the partial deriva-
tives ∂t, ∂x and ∂y . And we discretize again using implicit
difference schemes backward in time and central space to

w3 and central space scheme to μ. The results are stable,
just as we wanted. Once again time we have used Jacobi to
solve this modified stage.
The Stable Fluids also includes a method to compute the

motion of a density ϕ immersed in the fluid [17]. The equa-
tion for the evolution of this density is

∂tϕ = −(v ·�)ϕ + κ� ϕ + S (5)

where κ is a diffusion rate and S is a source of density. The
density is advected by the fluid using a semi-Lagrangian
technique, as in the second stage of the algorithm.

4. Warping with Fluids

The first idea to use fluids for image warping would be to
consider the image as a density field immersed in the fluid,
and as such could be transported by fluid motion. However,
as can be seen in Figure 1 this approach does not work well.

(a) Image (b) Forces (c) T = t2 (d) T = t2

Figure 1: Image warping with fluids.

For this experiment we used the source image in Fig-
ure 1a and the force field in Figure 1b. We performed a fluid
simulation using these external forces, and then applied the
resulting velocity field to the image in two ways.
First, we treated the image intensity as density values im-

mersed in the fluid and computed the motion of the image
function using equation (5), which moves the grey level val-
ues of the image directly, The result is a blurred image and
a fast disappearance of the image after applying additional
forces, as shown in Figure 1(c). This phenomenon happens
because of the intrinsic dissipation of the fluid equation.
The best strategy to avoid the above problem is to move

through the fluid velocity field, instead of image values,
the coordinates of a parametrization of the image. In this
way, the image features are preserved by a texture mapping
mechanism, as shown in Figure 1(d).

4.1. Texture Mapping and Warping

Based on the conclusions of the previous experiment, the
image warping using fluid simulation can be formalized as
a deformation induced on a texture.
Let [0, M ]× [0, N ] be the image domain. Given a force

applied to the image domain, we regard a fluid in [0, M ]×



Inicial force

New image

Parametrization p Mapping p−1

Value for
new image

Figure 2: Texture Warping: image coordinates carried by
vector field generated by the Navier Stokes equations.

[0, N ] and move this fluid taking external forces as ini-
tial data. For point (x, y) in the image domain, the coor-
dinates are transported to point (p1, p2) in [0, 1]× [0, 1] by
parametrization p.
Now, each coordinate p1 and p2 is interpreted as a den-

sity immersed in the fluid on [0, M ] × [0, N ]. We move
each coordinate separately through the fluid velocity field,
by equation (5) getting for a time step �t the coordinates
q1 and q2.
Finally, for a point (x, y) on domain of a new image the

value is computed as follows. If (q1, q2) belongs to [0, 1]×
[0, 1], then it is transported by the inverse parametrization
at the point (w, z) of [0, M ]× [0, N ]. The value of the new
image at point (x, y) is the value of the original image at
(w, z). If (q1, q2) do not belong to [0, 1] × [0, 1] then the
value of (x, y) is zero.
This computational scheme for fluid warping using tex-

ture mapping is illustrated in the diagram of Figure 2.
The warping function induced by the velocity field of

a fluid simulation has many desirable properties, such as
smoothness and continuity, that can be exploited in applica-
tions.
Additionaly, the mapping is naturally time dependent,

such that given the initial conditions (i.e., forces and pa-
rameters) at time t = 0, we have a one-parameter family
of warpingsWt, t ∈ R+, which directly applies for anima-
tion, and may also be interpreted in terms of evolution.

4.2. Control Mechanisms

Fluid simulation is capable of producing potentially
very complex deformations with good properties for im-
age warping, as we have discussed so far.
However, in order to be useful, we need to be able to

control the simulation such that the desired transformation
is obtained.
The simplest way to control the fluid warping is through

the direct specification of the simulation parameters.
By inspection of the fluid equations (2) is easy to verify

that the available parameters are:

• external forces f(x, t); and

• fluid viscosity μ(x).

An extra parameter is the total duration T of the simulation.
Surprisingly, just this small set of parameters already

provide powerful and intuitive mechanisms for controlling
the image warping.
First, note that both the forces and viscosity are spatially

variable. Thus, they are identified with functions on the im-
age domain which could be associated with image features.
Therefore, one natural way to specify forces and viscosity
is by auxiliary images.
We define the viscosity from the intensity of an auxiliary

image function on [0, M ]× [0, N ]. The viscosity values are
computed from a normalization of the image values to [0, 1]
and global scaling factor.
While the viscosity is defined by a scalar field, forces are

defined by a vector field, which can be encoded as an RGB
image. However, in many situations it is also convenient to
specify forces from point or curve sources. For this we em-
ploy procedural definitions.
Furthermore, for specification purposes it is convenient

to take the total external force f =
∑

fi, as the additive
combination of separate individual forces fi.
Since forces vary in time too, we must take this fact into

consideration for the definition of forces. More specifically,
useful options are: 1) instantaneous forces (i.e., acting at
specific time instants ti, i = 1, . . . , N ) In this case, it is
common to use initial forces at t = 0; 2) constant forces
(i.e., acting during a certain time interval [t0, t1]; 3) arbi-
trary forces (i.e., fully variable in time).
Also, the application of forces may be defined a pri-

ory or may depend on a sensing function on the simulation.
This second option is related to the so-called force-feedback
mechanism of control theory.
Up to now, we have adopted only basic specification of

forces, such as instantaneous and constant force fields. We
have also made use of a simple sensing mechanism, mainly
for stopping the simulation.



5. Results and Examples

In this section we give some examples of the results that
can be obtained with fluid warping.
The first set of examples demonstrate the use of forces

and viscosity to control image deformations.
Figure 3 shows a warping of a train leaving the station,

defined only by an instantantenous force at t = 0 along a
curve on the top part of the image. The goal was to get a
time-space distortion effect suggesting speed. Note that we
are able to create extreme distortions just by running the
simmulation for a longer period.
Figure 4 exhibits a warping of a Van Gogh’s painting,

defined by forces and variable viscosity. Here, we gener-
ated forces from the gradient of a segmentation of the hat
and the viscosity from a quantization of the image values.
Note that the forces act to expand the hat and, because the
surrounding background has variable viscosity, the hat de-
forms in a non-uniform way.
The second set of examples is an attempt to evaluate fluid

warping as a regular warping technique. For this purpose,
we make a comparison using examples from the paper of
Arad et al [1]. In this seminal work, the authors describe a
technique based on radial basis functions.
Figure 5 is an example in [1] for lifting the corner of a

girl’s mouth. To achieve this effect we constructed a viscos-
ity function, shown in Figure 5(b), that imposes a restriction
on the warping area. In this function, the region outside the
desired warping is white and more viscous (i.e., opposing
great resistance to fluid motion). The warping area is dark
and less viscous (i.e., offering small resistance to fluid mo-
tion). The forces used in the process are given by the gra-
dient field of the image shown in Figure 5(c). They exert
an upward force at the mouth location, producing the de-
sired effect. The results in Figures 5(d) and (e) demonstrate
that we are able to closely match their technique.

6. Conclusions and Future Work

In this paper we introduced fluid warping, a framework
for image deformation using fluid dynamics. Our technique
provides good results and is simple to use.
Future work includes two avenues of investigation. One

direction is towards a finer and more precise control of
the warping transformation. This can be achieved by ex-
ploiting sophisticated force-feedbackmechanisms, possibly
combined with an optimization strategy. Another direction
is to extend the framework for image morphing. In this con-
text, the coupling of two parallel fluid simulations could be
considered together with a composition operator for image
blending. Ideally, such an operator should be physicallly in-
spired.
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(a) Original Image (b) Velocity field at t = 0 (c) Image warping at t1 (d) Image warping at tn

Figure 3: Train warping.

(a) Original image. (b) Gradient field. (c) quantization for viscosity (d) Image at t3

Figure 4: Melting the Van Gogh hat.

(a) Original image. (b) Viscosity function (c) Edges for force field. (d) Fluid Warping (e) Result of Arad et al.[1]

Figure 5: Comparison with example in Arad et al., (1)




