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Resolution: 1024x1024

Number of features: 1000

Frames per second: ~50
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Motivation

Computational power growth is (now) not 

sustained by processor clock

Stuck at ~3GHz by 2008

Multi-core processing is the “new” way to 

increase speed

Good coupling between some applications 

needs and the type of processing 

provided by the GPU

Motivation

Games and simulation: GPU Physics

Motivation

Video: GPU for High Definition 
encoding/decoding (h264/MPEG-2: RapiHD)

Motivation

Scientific: 3D surface image capture and analysis 
solutions for dental, medical and other applications
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Motivation

Oil & Gas/Energy/Engineering: Volumetric 
reconstruction, analysis and visualization

Motivation

Augmented Reality: HD Video flows are now feasible

Motivation Motivation

Core 2 Extreme

QX9770

Clock Speed 3.20 GHz

FSB 400 MHz x 4

Cores 4

Cache 2x 6 MB

Process 45 nm

Transistors 820 million

Die-Area 214 mm²

TDP 136 W

Float OPs 42-57 GFLOPS

Price ~ US$ 1400.00
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Motivation

GeForce GTX280 (GT200)

Clock Speed 600 MHz (Shader: 1.30 GHz)

SPs 240

Memory 1024 MB

Process 65 nm

Transistors 1400 million (chip)

Die-Area 575 mm²

TDP 50-178 W (Card)

Float OPs Up to 933 GFLOPS

Price ~ US$ 450.00

Motivation

NVIDIA Texture Tools 2

SnapCT: tomographic 
reconstruction software 

Motivation

RapiHD:
• More performance than 
the best DSP can offer.
• GPUs offer more 
performance per dollar.
• A single GPU has the 
computational power of 
more than 100 DSPs. 

CUDA Architecture
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CUDA Architecture

CUDA requires Hardware-related 
knowledge

To learn a different paradigm, the 
bottom-up approach is a good start

PTX ISA

Single and double precision

Speed, rather than precision, is a major 
concern when rendering 3D scenes, the main 
purpose of GPUs

CUDA Architecture

8800GTX (G80):
16 groups of 8 Scalar Processors 
(SPs) each, totalizing 128 processors.
The groups, called multiprocessors, 
process blocks of 64 to 512 threads.
Each multiprocessor contains 8 SPs 
and 2 Special Function Units (SFUs).

CUDA Architecture CUDA Architecture
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CUDA Architecture

The blocks are divided into groups 
of 32, called warps, the scheduling 
unit used by the multiprocessor

CUDA Architecture

CUDA Architecture CUDA Architecture
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CUDA Architecture CUDA Architecture

CUDA Architecture CUDA Architecture
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CUDA Architecture

“Crunching numbers” – On your head
Maximum number of threads per 
multiprocessor is 768, or 24 warps; 

Threads must be organized in a maximum 
number of 8 blocks per-multiprocessor, and 
512 threads per block;

Each multiprocessor contains 8192 32-bit 
registers, 16 KB of shared memory, 8 KB of 
cached constants and 8 KB of cached 1D 
textures.

CUDA Architecture

G80 processor can be compared to a 
performance-optimized calculator; it is not 
as good as if there was a massive multi-core 
CPU

Memory latency is a significant matter
The cost of memory access depends on its 
location. Local memory is several times slower 
than shared memory and cannot be cached

Local memory is a partition of the device 
memory, so it is important to use faster, on-
chip, shared memory and registers

CUDA Architecture

CUDA Occupancy Calculator
using just a few parameters, as threads per 
block, registers per thread and shared 
memory per block, the programmer can know 
how much he/she can improve CUDA 
applications

CUDA profiler can also give kernel 
execution times in both GPU and CPU. 
The time spent with memory transfers is 
also monitored.

System Configuration

SIBGRAPI 2008 Tutorial



9/19/2008

9

System Configuration

CUDA is composed by three software: 

CUDA SDK

CUDA Toolkit

CUDA graphics driver

NVIDIA’s CUDA Site

www.nvidia.com/object/cuda_home.html

System Configuration

CUDA Developer SDK provides examples 
with source code, utilities, and white 
papers to help writing software with CUDA

NVIDIA CUDA Toolkit contains the 
compiler, profiler, and additional libraries
CUBLAS (CUDA Basic Linear Algebra 
Subprograms)

CUFFT (CUDA Fast Fourier Transform)

PTX ISA (Parallel Thread Execution Instruction 
Set Architecture)

System Configuration

Current versions of CUDA support only one 

version of the NVIDIA display driver 

Another issue on software versioning is the 

use of different versions of the SDK and 

Toolkit (i.e. SDK 2.0 with Toolkit 1.0), 

because of Application Programming 

Interface (API) and object code 

compatibility

System Configuration

Compatible with: Windows XP, Mac OS X, 
Linux and Windows Vista

Minimum hardware specs not defined by 
NVIDIA
1 GB of system memory and at least 1 GB of free 
hard disk space would fit

To use a CUDA compatible based video card, it is 
necessary a vacant PCI-Express (1.0 or 2.0) slot 
and an additional specific power connector, 
depending on the model

Natively compatible with Microsoft Visual 
Studio 2003 (7.0) and 2005 (8.0)
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System Configuration

CUDA is released free of charge for use in 
derivative works, whether academic, 
commercial, or personal

Basically, it is prohibited to disassemble, 
decompile or reverse engineer the object 
code provided

It is also determined that all NVIDIA copyright 
notices and trademarks should be 
acknowledged on derivative works, using the 
statement: “This software contains source 
code provided by NVIDIA Corporation”

CUDA Programming 
Approach

CUDA Programming Approach

CUDA routines can be invoked from C/C++ 

code

Declaring the host functions with the extern

“C” directive

Not using CUDA types in the function 

prototype

Only CUDA host code is addressable by 

C/C++ files

Device code is addressable only by CUDA

CUDA Programming Model

Programming model reflects the 

architecture

Programming model concepts

Threads

Blocks

Grids

Kernel
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Threads

Smallest units

Execute in parallel

Grouped in blocks

The minimum thread group that executes 

in parallel is called Warp and has 

WARP_SIZE = 32

Blocks

Logically divided in 1, 2 or 3 dimensions
x, y, z

Each dimension has a number of threads

Threads belonging to the same block can 
synchronize among them

Shared memory
16KB 

Faster than global memory

Great speed up

Grids

Group of blocks

Logically divided in 1, 2 or 3 dimensions

x, y, z

Each dimension has a number of blocks

The grid and block dimension and the 

amount of shared memory compose the 

kernel configuration

Kernel

Code executed by each thread

Needs a kernel configuration when 

invoked
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Language Extensions

Scope keywords
__device__ and __host__
Applied to variables and functions

__global__
Applied in kernel declaration

Examples
__device__ int number;

__host__ char c;

Language Extensions

Kernel invocation

Uses “<<<” and “>>>” to pass the 

configuration

Examples

kernel<<<128, 256>>>(params);

kernel<<<gridDim, blockDim>>>(params);

kernel<<< gridDim, blockDim, 1024>>>(params);

Language Extensions

__shared__ keyword

Used to allocate the variable inside the 

shared memory space

Only threads belonging to the same block can 

access this variable

Each block has an instance of this variable

Example

__shared__ char array[256];

New Types

Built-in vector types
All types except double have vector types
int2, uint3, float4, char4 etc.
Vector size is determined by the number in the type 
name
Elements are accessed as coordinates

x, y, z, w

dim3 type based on uint3
Values initialized with “1”

Example
float3 temp;

temp.x = 0.1f;

temp.y = 2.0f;

temp.z = 4.9f;

float4 f = make_float4(1.0f, 2.0f, 3.0f, 4.0f);

SIBGRAPI 2008 Tutorial



9/19/2008

13

Templates

Templates can be used in .cu files as in .cpp 
ones

Can be applied to data and functions

Allows compile-time pseudo-polimorphism

Example
template<class T> T add3(T t1, T t2) {

T result;

result.x = t1.x + t2.x;

result.y = t1.y + t2.y;

result.z = t1.z + t2.z;

return result;

}

Textures

Cached memory access

Any region of linear memory can be used 

as one-dimensional texture

More than one dimension can be obtained 

using CUDA Arrays

Textures

Texture references

Comunicates the host side with the device

Templates with type and dimension as 

parameters

Examples:

texture<float, 1> texture1;

texture<int, 1> texture2;

Using Textures

cudaMalloc

cudaMallocHost

cudaMemcpy

cudaMemset

cudaBindTexture

cudaUnbindTexture

cudaFree

cudaFreeHost
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Additional Libraries

CUFFT

Parallel Fast Fourier Transform

CUBLAS

Numerical Algorithms

CUDA Programming 
Guidelines

Thread arrangement, Sequential and non-sequential memory access, Page-locked 

memory, Loop unrolling, Floating point conversion

Execution Configuration

Qualifiers:

__host__, __device__, __global__

Kernel declaration:

__global__ void kernelName(parameters) {

...

}

Execution Configuration

Any call to a __global__ function must 

specify the execution configuration for that call

Dg: Grid dimensions

Db: Block dimensions

Ns: Number of bytes for shared memory

S: Stream associated to the kernel

<<< Dg, Db, Ns, S >>>
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Execution Configuration

Grid dimensions

Block dimensions
dim3

dim3 Dg(3, 2, 1);

or
dim3 Dg(3, 2);

dim3 Dg(2, 3, 1);

or
dim3 Dg(2, 3);

dim3 Dg(3, 1, 1);

or
dim3 Dg(3);

Execution Configuration

__global__ void Func(float* parameter);

dim3 Dg(3, 2);
dim3 Db(4, 3);

Func<<< Dg, Db >>>(parameter);

Execution Configuration

Built-in Variables:

gridDim / blockDim / blockIdx / threadIdx

unsigned int index = blockDim.x * blockIdx.x + threadIdx.x;

Func<<< 2, 8 >>>(parameter);

gridDim.x = 2;
blockDim.x = 8;

The third thread from second block will point to...

blockIdx.x = 1; threadIdx.x = 2;

Execution Configuration

__global__ void bin1D(float* parameter) {

unsigned int index = threadIdx.x;

...

}

__global__ void bin2D(float* parameter) {

unsigned int index = threadIdx.y * 16 + threadIdx.x;

...

}

256 threads

16 threads

1
6

 t
h

re
a

d
s
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Thread Arrangement

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

Read-only Texture Memory Kernel

Thread Arrangement

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

Texture Memory Access Pattern

0 1 2 3 127

Block #0 (1D)

0 +

128n

1 +

128n

2 +

128n

3 +

128n

127 +

128n

Block #n (1D)

Index

Unidimensional Grid

Thread Arrangement

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

Texture Memory Access Pattern

Row #0

Row #1

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,127

1,127

k,0 k,1 k,2 k,3 k,127Row #k

Index

B
lo
c
k
#
0

Thread Arrangement

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

Texture Memory Access Pattern

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,m

1,m

n,0 n,1 n,2 n,3 n,m

Block

T
w
o
d
im
e
n
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o
n
a
l 

G
ri
d
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Thread Arrangement

__global__ void read_only_tex_1D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ type shared[BLOCK_SIZE];

shared[threadIdx.x] = tex1Dfetch(tex_##type, idx);

}

__global__ void read_only_tex_2D_##type() {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

const unsigned int index = threadIdx.x + __mul24(threadIdx.y,

BLOCK_SIZE);

__shared__ type shared[BLOCK_SIZE];

shared[index] = tex2D(tex_2D_##type, idx, idy);

}

Kernel Configuration

Number of elements: 4,456,448

Threads per block: 128
Unidimensional grid: 34,816 blocks
Two dimensional grid: 16 x 2,176 blocks

__global__ void copy_tex_1D_##type(type* g_odata) {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

g_odata[idx] = tex1Dfetch(tex_##type, idx);

}

__global__ void copy_tex_2D_##type(type* g_odata) {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

const unsigned int idy = threadIdx.y + __mul24(blockIdx.y, blockDim.y);

g_odata[idx + __mul24(idy, __mul24(blockDim.x, gridDim.x))] =

tex2D(tex_2D_##type, idx, idy);

}

Thread Arrangement

Copy from Texture Memory Kernel

Kernel Configuration

Number of elements: 4,456,448

Threads per block: 128
Unidimensional grid: 34,816 blocks
Two dimensional grid: 16 x 2,176 blocks

Thread Arrangement

One dimensional configurations (for both 

grids and blocks) proved to be the best 

thread arrangement

Less multiplications for index calculation

Recommended Guidelines

One dimensional configurations (for both 

grids and blocks)
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template <class T> __global__ void write_only(T* g_odata, T c) {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

g_odata[idx] = c;

}

template <class T> __global__ void write_only_t(T* g_odata, T c) {

const unsigned int idxt = blockIdx.x + __mul24(threadIdx.x, gridDim.x);

g_odata[idxt] = c;

}

Sequential Memory Access

Write-only Global Memory Kernel

Kernel Configuration

Number of elements: 4,456,448

Threads per block: 128
Unidimensional grid: 34,816 blocks

template <class T> __global__ void read_only_gmem(T* g_idata, T c) {

const unsigned int idx = threadIdx.x + __mul24(blockIdx.x, blockDim.x);

__shared__ T shared[BLOCK_SIZE];

shared[threadIdx.x] = g_idata[idx];

}

template <class T> __global__ void read_only_gmem_t(T* g_idata, T c) {

const unsigned int idxt = blockIdx.x + __mul24(threadIdx.x, gridDim.x);

__shared__ T shared[BLOCK_SIZE];

shared[threadIdx.x] = g_idata[idxt];

}

Sequential Memory Access

Read-only Global Memory Kernel

Kernel Configuration

Number of elements: 4,456,448

Threads per block: 128
Unidimensional grid: 34,816 blocks

Sequential Memory Access

Mandatory for higher performances

Use this guideline whenever possible (reads 

and writes)

Recommended Guidelines

One dimensional configurations (for both 

grids and blocks)

Sequential reads and writes are 

mandatory for higher performances
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__global__ void convolve_V5_##type(type* g_idata, type* g_odata, type c) {

const unsigned int loadPos = (blockIdx.x << 7) + threadIdx.x;\

const unsigned int y = (loadPos >> 7);\

type sum = c;\

if((y >= 2) && (y < (gridDim.x - 2))) {\

sum = sum + (tex1Dfetch(tex_##type, loadPos - 2*128)\

+ tex1Dfetch(tex_##type, loadPos + 2*128))*0.0096200556f;\

sum = sum + (tex1Dfetch(tex_##type, loadPos - 1*128)\

+ tex1Dfetch(tex_##type, loadPos + 1*128))*0.20542368f;\

sum = sum + tex1Dfetch(tex_##type, loadPos)*0.56991249f;\

}\

g_odata[loadPos] = sum;\

}

template <class T>

__global__ void convolve_V5(T* g_idata, T* g_odata, T c) {

const unsigned int loadPos = (blockIdx.x << 7) + threadIdx.x;

const unsigned int y = (loadPos >> 7);

T sum = c;

if((y >= 2) && (y < (gridDim.x - 2))) {

sum = sum + (g_idata[loadPos - 2*128]

+ g_idata[loadPos + 2*128])*0.0096200556f;

sum = sum + (g_idata[loadPos - 1*128]

+ g_idata[loadPos + 1*128])*0.20542368f;

sum = sum + g_idata[loadPos]*0.56991249f;

}

g_odata[loadPos] = sum;

}

Non-sequential Reading

Vertical Convolution Filter

Non-sequential Reading

(x,y)

Memory Access Pattern

Kernel Configuration

Number of elements: 4,456,448
Threads per block: 128
Unidimensional grid: 34,816 blocks

Non-sequential Reading

Usage of textures could avoid the non-

sequential reading bottleneck

Non-sequential positions must be close (in 

the 2D texture)

Recommended Guidelines

One dimensional configurations (for both 

grids and blocks)

Sequential reads and writes are 

mandatory for higher performances

Usage of textures could avoid the non-

sequential reading bottleneck
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Shared Memory Usage

Increase memory access speed

Whenever more than one read from global 

memory is needed

Threads are synchronized through the usage of 
__syncthreads() function

Only 16KB per block

Recommended Guidelines

One dimensional configurations (for both 

grids and blocks)

Sequential reads and writes are 

mandatory for higher performances

Usage of textures could avoid the non-

sequential reading bottleneck

Use shared memory whenever more than 

one read from global memory is needed

Page-locked Memory

Device has direct access to host memory
No CPU polling

Increased memory bandwidth

Allocation through cudaMallocHost
function

Moderate usage should be done
The more page-locked memory is allocated, 
the fewer paged one is available, resulting in 
system performance degradation

Recommended Guidelines

One dimensional configurations (for both 
grids and blocks)

Sequential reads and writes are mandatory 
for higher performances

Usage of textures could avoid the non-
sequential reading bottleneck

Use shared memory whenever more than 
one read from global memory is needed

Page-locked memory increases host to 
device memory bandwidth transfer
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Loop Unrolling

Avoid branching tests

More lines of code, but probable gain on 

performance

It is highly dependent on the algorithm 

being implemented

// instead of doing this...

__global__ void sum_five(int* g_odata) {

const unsigned int loadPos = threadIdx.x;

int sum = 0;

for (int i = 0; i < 5; i++)

sum += tex1Dfecth(texture, loadPos + i);

g_idata[loadPos] = sum;

}

// ... do this!

__global__ void sum_five_unrolled(int* g_odata) {

const unsigned int loadPos = threadIdx.x;

int sum = tex1Dfecth(texture, loadPos);

sum += tex1Dfecth(texture, loadPos + 1);

sum += tex1Dfecth(texture, loadPos + 2);

sum += tex1Dfecth(texture, loadPos + 3);

sum += tex1Dfecth(texture, loadPos + 4);

g_idata[loadPos] = sum;

}

Recommended Guidelines

One dimensional configurations (for both grids 
and blocks)

Sequential reads and writes are mandatory for 
higher performances

Usage of textures could avoid the non-sequential 
reading bottleneck

Use shared memory whenever more than one 
read from global memory is needed

Page-locked memory increases host to device 
memory bandwidth transfer

Loop unrolling to decrease number of branches

Floating Point Conversion

CUDA 1.0 compatible hardware does not 

support double precision

Add the leading “f” to numbers

Instead of “1” or “1.0”, write “1.0f”

Do the same on host code!

Avoid precision errors

Recommended Guidelines

One dimensional configurations (for both grids 
and blocks)

Sequential reads and writes are mandatory for 
higher performances

Usage of textures could avoid the non-sequential 
reading bottleneck

Use shared memory whenever more than one 
read from global memory is needed

Page-locked memory increases host to device 
memory bandwidth transfer

Loop unrolling to decrease number of branches

Add the leading “f” to floating point numbers
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Case Studies

Matrix transpose, Image convolution, Point Based Animation

Transpose Matrix

Highlights an interesting issue on 

implementation techniques

Probably first developer thought

It could be done by simply computing, for each 

index, its transposed counterpart, and thus copying 

from one memory position to its destination

Let’s see what happens!

Transpose Matrix

__global__ void transpose_naive(float *odata, float* idata, int width,

int height) {

unsigned int xIndex = __mul24(blockDim.x, blockIdx.x) + threadIdx.x;

unsigned int yIndex = __mul24(blockDim.y, blockIdx.y) + threadIdx.y;

if (xIndex < width && yIndex < height) {

unsigned int index_in  = xIndex + width * yIndex;

unsigned int index_out = yIndex + height * xIndex;

odata[index_out] = idata[index_in]; 

}

}

Naive Matrix Transposing

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,15

1,15

15,0 15,1 15,2 15,3 15,15

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

15,0

15,1

0,15 1,15 2,15 3,15 15,15

Global Memory Reads Global Memory Writes

if (xIndex < width && yIndex < height) {

// load block into smem

unsigned int index_in = __mul24(width, yIndex) + xIndex;

unsigned int index_block = __mul24(threadIdx.y, BLOCK_DIM) + threadIdx.x;

// load a block of data into shared memory

block[index_block] = idata[index_in];

index_transpose = __mul24(threadIdx.x, BLOCK_DIM) + threadIdx.y;

index_out = __mul24(height, xBlock + threadIdx.y) + yBlock + threadIdx.x;

}

__syncthreads();

}

Transpose Matrix

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,15

1,15

15,0 15,1 15,2 15,3 15,15

Global Memory Reads Shared Memory Writes

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,15

1,15

15,0 15,1 15,2 15,3 15,15

Smart Matrix Transposing (Copy to Shared Memory)
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if (xIndex < width && yIndex < height) {

// write it out (transposed) into the new location

odata[index_out] = block[index_transpose];

}

Transpose Matrix

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

15,0

15,1

0,15 1,15 2,15 3,15 15,15

Shared Memory Reads Global Memory Writes

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

0,15

1,15

15,0 15,1 15,2 15,3 15,15

Smart Matrix Transposing (Write to Global Memory)

Transpose Matrix

Kernel Configuration

Number of elements: 8,192 x 8,192 = 67,108,864
Threads per block: 16 x 16 threads
Two dimensional grid: 512 x 512 blocks

Image Convolution Image Convolution

Multi-purpose algorithm used for edge 

detection, smoothing, noise reduction, 

etc.

Weights to be applied to pixels within a 

window surrounding the output pixels
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Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Filter Kernel

-1 0

-2 0

-1 0

-1

-2

-1

-2 0 -3

8 0 0

-2 0 2

3

Each central element represents

9 element-wise multiplications

Image Convolution

Some filters, called separable filters, can 

be split in two ones

Each filter is applied separately

Instead of doing n*m multiplications, only 

n+m are necessary

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

Central element

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1
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Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0 -11

Image Convolution

Window

0 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0 -11 -3

Image Convolution

Window

2 -11 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0 -11 -3

4
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Image Convolution

Window

2 3 -3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0 -11 -3

4 -13 Central element

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

-1

0 -11 -3

4 -13 -1

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

0 -11 -3

4 -13 -1

0

-1

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

-1

-2

0 -11 -3

4 -13 -1

0

-1

-5
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Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

0 -11 -3

4 -13 -1

0 -5 4

1 0 1

Row Filter

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

0 -11 -3

4 -13 -1

0 -5 4

1 0 1

Row Filter

1 0 1

Image Convolution

Window

2 3 3

-4 5 0

2 0 -2

Column Filter

-1

-2

-1

0 -11 -3

4 -13 -1

0 -5 4

1 0 1

Row Filter

3 Central element

Each central element represents

6 element-wise multiplications

(3 vertical plus 3 horizontal)

Image Convolution

Kernel Configuration

(row convolution)

Number of elements: 9,437,184 (3,072x3,072)

Threads per block: 152 (152x1) threads
Two dimensional grid: 73,728 (24x3,072) blocks

Kernel Configuration

(column convolution)

Number of elements: 9,437,184 (3,072x3,072)

Threads per block: 128 (16x8) threads
Two dimensional grid: 12,288 (192x64) blocks

Optimized and non-optimized convolution filter execution times
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KLT Tracker

Edge detection

Template matching

Scale invariant features (SIFT)

Optical flow

AR System

Tracking stage Superposition algorithm...

KLT Tracker

Kanade Lucas Tomasi Tracker
Good Features to Track (GFTT)

Tracking stage

Input Image GFTT Result

KLT Tracker

Kanade Lucas Tomasi Tracker
Good Features to Track (GFTT)

Tracking stage

GFTT Result Tracking Result

KLT Tracker

Implementation :: GFTT
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KLT Tracker

Implementation :: GFTT

KLT Tracker

Implementation :: GFTT

KLT Tracker

Implementation :: GFTT

KLT Tracker

Implementation :: GFTT
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KLT Tracker

Implementation :: Tracking stage
Pyramid calculation

Search correspondence inside window

KLT Tracker

KLT Tracker

Resolution: 1024x1024

Number of features: 1000

Frames per second: ~50

Point Based Animation (PBA)

Physics Models

Accurate Simulation

Offline

Originally Tetrahedrons

Mass-Spring Systems

Lighter Models
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PBA

Finite Element Based

Mesh-Free Approach

Continuum Mechanics Concepts

Potential Capabilities

Elastic, Plastic and Melting Objects

Topological Changes

Rendering  Flexibility

Why PBA?

Continuum Mechanics

Many Particles

Same Properties

Suitable Applications

Fluid Mechanics

Civil Engineering

Why PBA?

Particles

Discrete Set of Points

Meshless

Without Connectivity

Processed Separately

Little Information Needed

Stress and Strain

Why PBA?

Physics Concepts

Accurate Modeling

PhysX

Highly Parallelizable

Real Time
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How PBA Works

Physics Elements (Phyxels)

Simulation Quantities

Position, Displacement, Velocity

Reference Shape

Support Radius

Mass, Volume and

Density

Initialization

Momentum Matrix

How PBA Works

Add External Forces

Calculate Strain and Stress

For all Neighboring Phyxels

Spatial Hash

Young’s Modulus

Poisson’s Ratio

Update forces

Action and Reaction

Strain and Stress

Strain (∆l/l)

Displacement Field

Not scalar like 1D case

u(u, v, w)T

Stress (f/A)

Linearly related

σ = E·ε

Hooke’s Law
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Constants

Young’s Modulus (E)

Proportionality Constant

Material Dependent

Steel: 1011 N/m²

Rubber: ~107 N/m²

Poisson’s Ratio (ν)

[0 .. ½)

Volume Conservation

Integration

Explicit Integration

Euler

Verlet

Runge-Kutta 4th Order

Implicit Integration

In Progress…

Rendering

Passive Surfel Advection

Interpolation of Surfel’s Displacement 

Vectors

Nearby Phyxels

Mesh Vertices as Surfels

Point Based Approach

In Progress…

CUDA Implementation

5 kernels:

precalcImutableValues

calcStrainStressA

calcStrainStressB

Integrate

updateSurfels

struct CuBody {

float *d_positions_masses;

float *d_displacements_volume;

float *d_forces;

float *d_momentMatrices;

int numPhyxels;

int maxNeighbors;

unsigned short *d_neighbors;

float *d_omega;

float *d_gradui;

float *d_lastDisplacements;

};
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PBA Results

Final Considerations

Final Considerations

GPGPU technology applies to MAR related problems
important contributions related to interest point 
based techniques and tracking of corners and edges, 
implemented using this technology

Massive data processing applications have for a 
long time demanded expensive dedicated 
hardware to run. This new approach should bring 
image processing of HD videos to the desktop 

Using this approach, we can unify the CPU and GPU 
programming, and maintain time costly algorithms 
running concurrently with a sophisticated HD MAR 
pipeline

? !
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CUDA as a Supporting Technology for 
Next-Generation AR Applications

Thiago Farias, João Marcelo Teixeira, Pedro Leite, 
Gabriel Almeida, Veronica Teichrieb, Judith Kelner

{tsmcf, jmnxt, pjsl, gfa, vt, jk}@cin.ufpe.br

Virtual Reality and Multimedia Research Group
Federal University of Pernambuco, Computer Science Center
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