Color Gradient Map-Oriented Anisotropic Diffusion Filtering

Leandro Coser¹, Antonio C. Sobieranski¹, Adiel Mittmann¹, Eros Comunello², Aldo von Wangenheim¹

¹LAPIX – Federal University of Santa Catarina – Florianópolis – Brazil ²UNIVALI – Universidade do Vale do Itajaí – São José – Brazil

{leandro.coser,asobieranski,adiel,eros,awangenh}@inf.ufsc.br

Figure 1. Traditional (a \rightarrow b) and gradient maporiented (a \rightarrow c \rightarrow d) filtering.

Introduction

- The anisotropic diffusion filter [1, 2] is a powerful image processing technique for noise removal. It works by performing smoothing on the image while preserving boundaries between regions.
- When the filter is applied over many iterations, however, even edges that were clear in the original image become blurred.
- We propose that the anisotropic diffusion filter be oriented by a gradient map based on the original image. Because this map is static, i.e., it does not change over time, well-defined edges are not lost even when the filter is applied many times over.

Orienting the Anisotropic Diffusion Filter

• In order to guide the anisotropic diffusion filter, a gradient map *G* is calculated by means of a convolution using the following masks:

$$I_{y} = \frac{1}{4} \begin{vmatrix} -b & a & b \\ 0 & 0 & 0 \\ b & a & b \end{vmatrix}$$
 and $I_{x} = \frac{1}{4} \begin{vmatrix} -b & 0 & b \\ -a & 0 & a \\ -b & 0 & b \end{vmatrix}$.

- Here, $a=2(\sqrt{2}-1)$ and $b=(2-\sqrt{2})$.
- The modulus of the vector formed by the two components is used as an estimation for the gradient for each channel.

Figure 2. On the left, original images; on the right, results obtained by our approach.

• The basic diffusion equation [3] for an image I(x, y) with M channels and a signal that is initialized with u(x, y, 0) = I(x, y) is

$$\partial_t u_i = \operatorname{div} \left| D \left(\sum_{k=1}^M \nabla u_k \nabla u_k^T \right) \nabla u_i \right|.$$

• We propose that this equation be changed to accommodate the gradient map G in the following way: $\partial_t u_i = \operatorname{div} \left| D \left(G_i \sum_{k=1}^M \nabla u_k \nabla u_k^T \right) \nabla u_i \right|.$

Figure 1 shows an overview of the whole process.

• Figure 2 contains two images and their filtered versions. While internal regions were greatly smoothed, edges remain clear.

Conclusions

- The anisotropic diffusion filter can be improved by using a color gradient map that remains unchanged over iterations.
- With this approach, we ensure the preservation of edges that are well defined in the original image.

References

- [1] J. Weickert. *Anisotropic diffusion in image processing*. Teubner-Verlag, 1998.
- [2] J. Weickert. Applications of nonlinear diffusion in image processing and computer vision. *Acta Math Univ Comenianae*, 70:33–50, 2001.
- [3] T. Brox. From pixels to regions: partial differential equations in image analysis. PhD thesis, Saarland University, 2005.