Using Metaprogrammed Functors to
Implement Double-Dispatch

TN

for Collision Handling

Tiago H. C. Nobrega', Diego D. B. Carvalho', Aldo von Wangenheim*

'L APIX - Federal University of Santa Catarina - Floriandpolis - Brazil

www.lapix.ufsc.br

{tigarmo,diegodbc,awangenh}@inf.ufsc.br

fl
AABBTree OBBTree SphereTree
AABBTree f1 f2 f3
OBBTree f2 — f4
SphereTree f3 f4 —
Introduction

® Collision detection engines and frameworks are
difficult to design and riddled with efficiency,
modularity and cleanliness trade offs.

® The management of multiple object types colliding
InN a scene can be aided by the double dispatch
mechanism.

® We show how Dboth object-oriented and generic
notions can be used together to implement efficient,

clean double dispatch.

Bounding Hierarchies with Double-
Dispatch and Metaprogramming

® Bounding trees [1] are commonly used in collision
detection. It Is natural and simple to have each
bounding tree class inherit from a base class filled
with common methods.

® Alexandrescu [2] shows how to use this kind of
hierarchy to efficiently implement double dispatch
with a matrix of function pointers.

® We expand this idea with functors.

® Some C++ metaprogramming tricks offload the
chore of filling the matrix to the compller.

® The functor templates can be specialized as needed
—the compiler will find the right instantiation.

template<class TreeA, class TreeB>
struct CollisionFunctor{

bool operator()(const TreeA&, const TreeB&);

}

Conclusions
® |nitial benchmarks: at worst 15% overhead.

® The idea of generic functor matrices can also be

applied to other dispatch cases.

References

[1] C. Ericson. Real-Time Collision Detection. Morgan
Kaufmann, December 2004.

[2] A. Alexandrescu. Modern C++ design: generic

programming and design patterns applied. Boston, MA,
USA, 2001.




	Slide 1

