
Level of Detail for Point Model Rendering

Felipe Carvalho Antonio Oliveira Ricardo Marroquim
Universidade Federal do Rio de Janeiro - UFRJ/COPPE

{fmc,oliveira,ricardo}@lcg.ufrj.br

Abstract

Point-Based representation became a popular alterna-
tive to polygonal meshes for representing 3D geometric
models. 3D photography and scanning systems acquire the
geometry and appearance of real-world objects as point
samples. In this work we present a method for efficiently
creating a hierarchical multiresolution structure for point
models. A variant of the octree is used to partition the
space, while the merging of samples is driven by two error
metrics.

1. Introduction

Point Based representation has been proposed as an alter-
native to polygonal meshes (usually triangular) for 3D sur-
faces, offering a number of benefits [2]. One of the main ad-
vantage of discrete point primitives over polygonal meshes
is the lack of topological information; only a set of points,
with additional attributes such as normal and color, have to
be stored and processed. This allows for a simple and com-
pact representation, ideal for efficient rendering and editing.

Today’s technology for 3D surface acquisition has
reached sampling densities that makes interactive visualiza-
tion of the acquired data sets a difficult task[5]. With the
increase of scene complexity, projected triangles become
smaller than a single pixel. In this case, triangle based scan-
line rendering wastes time in superfluous sub-pixel compu-
tation. Level of detail (LOD) methods [3] can remove such
tiny geometric details dynamically, but at the expense of a
large CPU load for on-the-fly tree traversal and retriangula-
tion. However, the enormous processing power of modern
graphics hardware is underused.

2. Space-Partitioning Hierarchy

The multiresolution point representation used is a point-
octree, which partitions the space adaptively according to
the sample distribution (data driven), rather than regularly
in space (space-driven), such as region-octrees [4].

Figure 1. Merging splats

Each leaf node Ln of the hierarchy H , contains a set of
k splats sc = {s1...sk}, while each internal node In has a
representative elliptical splat covering the extent of its chil-
dren. Elliptical splats were chosen over circular splats, since
the same of amount of surface can be covered with less
samples [2]. Furthermore, for efficient back face culling,
each In ∈ H also includes a normal-cone with semi-angle
θ bounding all samples in sc.

3. Merging splats

Given a set of splats where each splat has center ci and
normal ni, the new merged splat sm has center and normal
defined as [6]:

cm =

∑
i

|si| · ci∑
i

|si|
(1)

nm =

∑
i

|si| · ni∑
i

|si|
, (2)

where |si| stands for the area of splat si. To compute the
extent of sm, we sample n (8 is enough) points pi

j on the
boundary of each splat si and project them to the splat plane
of sm. Then we apply principal component analysis (PCA)
to the set of points pi

j to find the main axis directions and
proper scaling.

4. Error Measures

A good error measure should be able to distinguish
smooth regions, that can be well handled by a single ellip-
tical disk, from detailed or boundary regions. To this end,
we use two error measures: a perpendicular error [1] and a
tangential error . The perpendicular error ep is the mini-
mum distance between two planes orthogonal to the node’s
normal, which define a region enclosing all children in the
node’s descendent leaves. The computation of ep is illus-
trated in Figure 2, and can be expressed as:

ep = max{ai + di} − min{ai − di} (3)

with di = ri

√
1 − (ni · n)2

ai = (ci − p) · n,

where ri is half the length of the major axis of si.
For the tangential error, sm and its respective children

are rendered offscreen in a small viewport. sm is first ren-
dered in blue, while its children are all rendered in red. The
tangential error et (Figure 3) is proportional to the ratio be-
tween the area in red and the total painted area. Specifically,
it is given by:

et = rm

√
nblue

nblue + nred
, (4)

where nblue and nred, represent the number of pixels with
the respective colors. If none of these two errors exceeds
a predefined threshold ε, the sm is rendered following the
approach of [1]. Otherwise the tree of its node decendants
must be explored .

5 Conclusion and Future Work

We present a multiresolution hierarchy for point samples
based on a space partitioning data structure, i.e., the point-
octree. Elliptical splats are created in each internal node

Figure 2. Perpendicular error

Figure 3. Tangential error

by analyzing the local surface properties. The two error
metrics are used to define which splats should be projected
for a given viewpoint, taking into account distance to the
eye as well as surface smoothness, i.e, finer resolution splats
along the silhouettes and detailed regions.

As future work, a more sophisticated partitioning refine-
ment shall be investigated, such as curvature driven meth-
ods. This will allow for a more coherent clustering based on
surface properties, instead of spatial distribution. Further-
more, the hierarchical data structure should only be used
to create the coarser resolution splats, while an array-like
structure that maps well to the GPU, should be used for ef-
ficient rendering. In addition, the perpendicular error can be
improved for elliptical splats, since it was derived for circu-
lar splats [1, 4, 5]. In this case, the error is overestimated
using the larger ellipse’s axis.

References

[1] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequen-
tial point trees. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 657–662, New York, NY, USA, 2003. ACM.

[2] L. Kobbelt and M. Botsch. A survey of point-based
techniques in computer graphics. Computers Graphics,
28(6):801–814, Dec. 2004.

[3] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varsh-
ney. Level of Detail for 3D Graphics. Elsevier Science Inc.,
New York, NY, USA, 2002.

[4] R. Pajarola. Efficient level-of-details for point based ren-
dering. In Proceedings IASTED Invernational Conference
on Computer Graphics and Imaging, Calgary, AB, Canada,,
2003. ACTA Press.

[5] S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution
point rendering system for large meshes. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 343–352, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publish-
ing Co.

[6] J. Wu, Z. Zhang, and L. Kobbelt. Progressive splatting. Sym-
posium on Point-Based Graphics, 0:25–142, 2005.

