3D Texture Painting of Point Models

José Ricardo Mello Viana, Ricardo Marroquim, Cldudio Esperanca
Universidade Federal do Rio de Janeiro - PESC/COPPE

Abstract

We propose a technique for painting 3D models based
on a rendered image of the model and a 2D map of normal
vectors. Texture generation and coordinate mapping is then
produced on-the-fly, making it possible to paint in broad
strokes or in small detail. The minimalistic requirements
of this technique make it suitable for painting both regular
meshes and point-based models.

1. Introduction

Most 3D painting systems follow the so-called UV-
mapping paradigm. Thus, they require an initial step where
an “unwrapping” map of the model surface is established.
This is then followed by mapping the user’s painting strokes
on the obtained flattened canvas. Such a system is heavily
dependent on the quality and resolution of the unwrapping
map which ideally should contain as little angle distortion
as possible [2]. The map should also minimize the extent
of the texture seams which will be responsible for discon-
tinuities on the map. Another problem is the fact that the
method is not concerned with the areas of the model which
will actually be painted: the texture resolution is fixed once
the unwrapping map is established, making it hard to paint
small detail in some parts of the model without making the
texture bigger as a whole.

In this work we follow the ideas of the Chameleon sys-
tem [1], where textures and maps are created dynamically,
and only for affected parts of the model. Given a view of
the model, the artist paints it as though it were a regular 2D
canvas. Only after the view is changed — rotating or moving
the model, for instance — is the painting transformed into a
texture and a corresponding map.

2. Painting Interface

The painting interface is similar to that of other 3D paint-
ing systems. A 3D model is loaded and rendered, after
which the user chooses a color for painting. The painting
strokes are realized with the aid of a 3D cursor in the shape

Figure 1. Views of a model painted with our system.

of a regular polygon with size and number of sides specified
by the user. The location of the 3D cursor is specified with
the mouse, but its projection on the screen follows the cur-
vature of the model. By clicking and dragging the mouse
over the model, the parts of the model traveled by the 3D
cursor have their color changed. These paint strokes are in
fact drawn on a temporary buffer which will later be used to
build a proper texture.

Despite the fact that no texture is generated at this stage,
the user is shown a proper visual feedback by recomput-
ing the illumination function of the screen pixels modified
by the painting (see Figure 1). In order to compute the 3D
cursor projection and the illumination function, a Normal
Buffer is used, that is, a buffer which associates a normal
vector with each color buffer pixel. The Normal Buffer also
makes it possible to distinguish background pixels from
pixels covered by the model (see Figure 2).

3. Texture Generation

Once the model view is zoomed, rotated or translated, a
new texture is created containing all paint strokes input by
the user since the previous view change. This corresponds
to (1) a texture image and (2) a set of texture coordinates
which will be assigned to the affected model points.



@ (b) ()

(d)

Figure 3. Drawing texture passes: (a) input model for paint stroke, (b) points of affected area, (c) bounding box of
new stroke, (d) expanded bounding box containing all points related with the stroke, (e) critical points (green) possibly
associated with more than one texture, (f) model with new stroke.

Figure 2. Normal Buffer.

The texture image should contain not only the newly
painted strokes, but also the background pixels in the neigh-
borhood of the painted areas. In fact, the texture image cor-
responds to all color buffer pixels inside a bounding box
B large enough to contain all strokes, plus a safety mar-
gin. This safety margin is the maximum edge length in the
case of a mesh model, or the maximum distance between
neighbor samples in the case of a point-based model. For
efficiency considerations, texture images are not handled
individually, but rather copied as patches in a large texture
atlas. This, however, makes it necessary to adopt some sort
of management of the atlas space such as the one proposed
by Igarashi [1].

For a point of the model to be assigned a new set of tex-
ture coordinates, it must satisfy the following conditions:
(a) it must be visible in the current view, and (b) it must fall
inside bounding box B. The selection of these points is per-
formed with the aid of an Id Buffer, which maps screen pix-
els to model points. Notice, however, that a given point may
participate in more than one texture image. This may occur
for vertices close to the border of B. As a consequence,
drawing the textured model may require several passes (see
Figure 3).

4. Point-based rendering

As explained above, the system uses two auxiliary
buffers (Normal and Id) which must be supplied along with
arendered view of the model. Although these could be eas-
ily obtained for regular mesh models, our proof-of-concept
prototype implements texture painting on point-based mod-
els. This is accomplished with the help of the point-based
renderization technique described in [3].

5. Conclusions

Although model rendering is mostly implemented in
GPU, the texture painting algorithms are still processed
entirely in CPU. We are currently at work implement-
ing a better-performing prototype where texture painting is
mostly implemented in GLSL, like [4].

An important topic not addressed by Igarashi is that of
texture patch reuse. We are experimenting with an algo-
rithm for counting texture patches in which each point par-
ticipates and eliminating unused patches.

References

[1] T. Igarashi and D. Cosgrove. Adaptive unwrapping for inter-
active texture painting. In I3D ’01: Proceedings of the 2001
symposium on Interactive 3D graphics, pages 209-216, New
York, NY, USA, 2001. ACM.

[2] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM
Trans. Graph., 21(3):362-371, 2002.

[3] R. Marroquim, M. Kraus, and P. R. Cavalcanti. Efficient
point-based rendering using image reconstruction. In Sympo-
sium on Point-Based Graphics 2007, Prague-Czech Republic,
September 2007.

[4] T. Ritschel, M. Botsch, and S. Miiller. Multiresolution gpu
mesh painting. In Eurographics 2006 Short Papers, pages
17-20, 2006.



