
Physically Based Simulation Using Particle Systems

Yalmar Ponce Atencio Claudio Esperança
Federal University of Rio de Janeiro

Computer Graphics Laboratory
{yalmar, esperanc}@lcg.ufrj.br

Abstract

This work consists of extending the rigid body simula-
tion method presented by Harada [3]. Firstly, the Newto-
nian formulation is replaced by impulse based physics [2].
Secondly, deformable body simulation is achieved by using
two different approaches: non-zero volume objects are han-
dled by an adapted meshless shape matching technique[5],
whereas objects such as cloths and ropes are simulated us-
ing Jakobsen’s approach [4].

1. Introduction

Physically based simulation of rigid and deformable
bodies has been intensively researched during the last
decade. The idea is to obtain a fast and realistic, although
not (in general) physically correct, animation. Its main area
of application is in entertainment, such as animation films
or computer games.

In this work we propose a unified physically based sim-
ulation technique, which supports many kinds of objects:
rigid, deformable with volume, cloths and ropes. Since all
objects are represented by particle systems, they share the
same collision detection engine. Further, collision response
is computed by integrating collided particle reaction forces
for inferred displacements.

2. Collision detection

As described in [3], objects are represented by particle
sets, where each particle is a sphere with small diameter.
Thus, the collision detection process essentially detectscol-
lisions between small spheres. Complex objects can be han-
dled by employing a voxelization method in order to place
particles onto the object boundary (see the figure 1).

Figure 1. Discretizing the boundary of a complex
object.

3. Collision response

Once all colliding particles are determined, Harada esti-
mates the forceFB and torqueτB that will be applied to a
given bodyB by adding up all contributions computed for
its associated particles, i.e.,

FB =
∑

i∈B

fi τB =
∑

i∈B

ri × fi,

whereri andfi are the relative position and the force of par-
ticle i respectively. In contrast, we employ a slightly differ-
ent formulation, using impulses for collided particles asso-
ciated with rigid bodies. Applying an impulse at a collided
point (the midpoint between two collided particles) changes
the linear and angular velocities of the body according to

v
′

= v + J/m

ω
′

= ω + I−1(r × J).

For a particle associated with a deformable object, rather
than submit it to a force or impulse, the particle is merely
pushed to a non-colliding state.

4. Integration

Once the new states of colliding particles are computed,
a new state for the object to which they belong must be es-
timated. This is done by integrating all particle contribu-
tions. For rigid bodies, the integration follows the approach



of Guendelman et al. [2]. In the case of deformable objects
with volume, we use the meshless shape matching tech-
nique presented by Mueller et al. [5], which uses a semi-
implicit integration method (Figure 2 illustrates collision
response for both rigid and deformable bodies). Cloths and
ropes are simulated using the Jakobsen method [4], which
uses a Verlet integrator supported by a constraint relaxation
scheme.

(a) (b) (c)

Figure 2. A collided state (a) and the state after col-
lision response for rigid (b) and deformable bodies
(c).

5. Preliminary results

Our prototype is implemented using C++ and
OpenGL/GLSL. Some results are shown in the fig-
ures 3, 4 and 5. In the examples, we use deformable cubes
with 386 particles, bunnies with 402 particles, cloths with
625 particles and each domino piece has 15 particles. All
the examples run at interactive rates.

Figure 3. Three deformable cubes in contact.

6. Conclusions and future work

As shown by Harada, the method can be executed en-
tirely in GPU by storing particle data in textures. Since
modern GPUs support 4096x4096 textures, thousands of
objects can be simulated. Since our current prototype is
still CPU programmed, our next step is to reimplement it in
GPU using the CUDA [6] technology..

The particle-based method works well for small time
steps. On the other hand, fast moving particles or large time

Figure 4. A Cloth falling on top of bunnies.

Figure 5. Simulating a domino configuration.

steps may lead to an ill-conditioned simulation. We are cur-
rently at work trying to improve the collision detection pro-
cess in order to support larger time steps and objects with
different particle sizes by adapting the technique presented
by Le Grand [1].

Notice that although objects are represented by coarsely
geometry for quick collision detection, rendering can be
performed using more detailed representations. Our pro-
totype, at this time, does not support interaction with fluids
yet, but the extension is natural.

References

[1] S. L. Grand.GPU Gems 3, chapter Broad-Phase Collision De-
tection with CUDA, pages 697–721. Addison Wesley, 2007.

[2] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid
bodies with stacking. InSIGGRAPH ’03: ACM SIGGRAPH
2003 Papers, pages 871–878, New York, NY, USA, 2003.
ACM.

[3] T. Harada.GPU Gems 3, chapter Rigid Bodies on GPU, pages
611–632. Addison Wesley, 2007.

[4] T. Jakobsen. Advanced character physics. InProceedings,
Game Developer’s Conference 2001, SJ, USA, 2001. GDC
Press.

[5] M. Muller, B. Heidelberger, M. Teschner, and M. Gross.
Meshless deformations based on shape matching. InProceed-
ings of SIGGRAPH’05, pages 471–478, New York, NY, USA,
2005.

[6] NVIDIA TM. CUDA Environment – Com-
pute Unified Device Architecture, 2007.
http://www.nvidia.com/object/cudahome.html.


