Using Metaprogrammed Functors to Implement Double-Dispatch for Collision
Handling

Tiago H. C. Nobrega, Diego D. B. Carvalho, Aldo von Wangenheim
LAPIX - Laboratory for Image Processing and Computer Graphics
UFSC - Federal University of Santa Catarina, Brazil
{tigarmo,diegodbc,awangenh } @inf.ufsc.br

Abstract

We provide a strategy to the management of collisions
between multiple objects with different types employing
multiple-dispatch and both Object-Oriented and Generic
Programming concepts. The solution scales well to the
number of object types, with a fixed, constant-time cost to
arrive at the proper interference-detection routine. Addi-
tionally, it helps the application programmer by allowing
them to implement only the functionality required by their
own program, removing the need for common solutions such
as Abstract Base Classes full of pure virtual methods.

1. Introduction

The design of a collision detection engine or framework
is a difficult task riddled with decisions and trade-offs on
important design goals such as efficiency, modularity, size,
dependencies, and others. The C++ language is a mature
language with support for both Object-Oriented (which pro-
vides runtime polimorphism and aims at easing the devel-
opment and maintenance of large systems, such as 3D en-
gines) and Generic (with templates, offering run-time speed
benefits) programming. In this work we explore the com-
bination of these methodologies to implement the collision
detection mechanism between different entities. We aim to
expose the benefits this combination provides to both the
system designer and the application programmer.

2. Bounding Hierarchies with Double-Dispatch
and Meta Programming

Bounding Hierarchies[2] are often employed by colli-
sion detection algorithms to speed up interference detec-
tion between models with complex geometry, and com-
mon choices for bounding objects include Spheres, Ori-
ented Bounding Boxes (OBBs) and Axis-Aligned Bounding

Table 1. A matrix of functions.

AABBTree | SphereTree | OBBTree
AABBTree f1 - 12
SphereTree - - -
OBBTree 3 - 14

Boxes (AABBs). Classes are often designed so that most
functionality is placed in a base class, here named Bound-
ingTree, and then object-specific details are delegated to
other classes that inherit from it.

The problem arises when a scene is composed of many
distinct kinds of entities and a manager object has to decide
if two entities are colliding. The manager only has knowl-
edge of BoundingTrees. The problem is such: given two in-
stances of BoundingTree subclasses, how can we efficiently
determine if they are intersecting?

Since the choice of algorithm to determine the intersec-
tion depends on the types of both entities, this problem can
be solved with Multimethods, which are “the mechanism
that dispatches a function call to different concrete func-
tions depending on the dynamic types of multiple objects
involved in the call” (Alexandrescu[l]). To cope with the
fact that the C++ language has no built-in support for Mul-
timethods Alexandrescu proposes a few alternatives, one of
which is used here - a constant-time matrix of pointer to
functions, with some adaptations.

The method consists of assigning a numerical value (an
id) to each BoundingTree subclass, retrievable at runtime
through a virtual function. Alexandrescu uses these ids to
populate a matrix of function pointers, at setup time, and to
dispatch a function based on the types of two objects.

There are several advantages to this approach: Because
the matrices become the sole point of interaction, no class
involved in the BoundingTree hierarchy needs to be aware
of the others, reducing build times on changes and poten-
tially diminishing coupling — this is a benefit over common
implementations of double-dispatch like the Visitor design
pattern[3]. Additionally, the cost to arrive at the correct

Figure 1. Employing different bounding hier-
archies at runtime on the Stanford Armadillo
and Bunny.

function is constant regardless of the number of subclasses
and the matrix needs to be populated (and thus, functions
implemented) only for the desired types, e.g., if the pro-
grammer knows their application won’t need SphereTrees
they can disregard their intersection tests with the other hi-
erarchy types entirely (table 1). Since many collision de-
tection algorithms are commutative, the number of imple-
mented functions can be further reduced.

We extend the matrix to hold Functors (function objects)
instead of raw function pointers. The added cost of one vir-
tual call is the downside to the greater flexibility, as func-
tions are poor at affecting the external world and managing
state. The functors are small pieces of code written sep-
arately from the tree hierarchies and dedicated exclusively
to handling the intersection between two types of bounding
objects.

2.1. Functor Generation with Metaprogramming

It can be cumbersome to populate the matrices individ-
ually, cell-by-cell, because a matrix of n types requires n?
functions, or (g) + n if the algorithms are commutative.
The matrices and the functors are actually class templates
and the number of BoundingTree subclasses of interest is
usually known at compilation time, so we developed a set of
utility functions that work on Typelists[1] to create appropri-
ate Functor classes and populate matrices through metapro-
gramming.

For instance, assume we’re interested in managing
Sphere, AABB and OBB trees. We have code to perform
the intersection tests for all combinations between these
three types of geometric objects, and we wrap all of them in-
side an utility class called OverlapDetection. The signature

for all intersection functions is similar such that the general
functor to perform the tests could look like:
template<class TreeA, class TreeB>

struct OverlapTester{
bool operator () (const TreeA& a, const TreeB& b)

{

return OverlapDetection::overlaps (
a.boundingObject (), b.boundingObject());
}

s

Next, we implement a function to receive the list of fypes
of trees we’re interested in and perform all pairwise combi-
nations of types from that list, at compilation time. Each
pair fully defines an OverlapTester functor. If a particular
pair doesn’t follow the OverlapDetection convention, the
OverlapTester can be trivially specialized. As long as this

specialization is visible to the compiler it’ll choose it when
forming the specialized pair from the typelist.

3. Conclusions and Future Work

By our initial evaluations the time spent finding the ap-
propriate method to dispatch takes up to 10% of the overall
intersection process in the worst case. The scene in figure
1 reaches about 400 full intersection processings per sec-
ond on an standard Athlon X2 3800+ with both models at
around 3 thousand triangles. A next step is to compare this
implementation with a more traditional approach and locate
the source of the overhead.

We believe the idea of generic functor matrices can be
expanded beyond the double-dispatch case. Any time a new
kind of operation has to be performed on a BoundingTree
a matrix can be employed instead of further extending the
basic BoundingTree contract to support new dependencies.
For example, employing bounding trees for Raytracing[4]
would require line segment-bounding tree intersection tests.
A matrix for such an application could have one row for
each BoundingTree subclass, and the LineSegment class for
its single column.

References

[1] A. Alexandrescu. Modern C++ design: generic program-
ming and design patterns applied. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[2] C. Ericson. Real-Time Collision Detection (The Morgan
Kaufmann Series in Interactive 3D Technology). Morgan
Kaufmann, December 2004.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[4] 1. Wald, S. Boulos, and P. Shirley. Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM
Trans. Graph., 26(1):6, 2007.

