
Surface Equalization

Francisco José Benavides Murillo (1) Douglas Navarro Guevara (2)

Francisco Torres-Rojas (3) Alexander Ramírez Gonzalez (1)

(1)Universidad de Costa Rica (2)Universidad Nacional de Costa Rica
(3)Instituto Tecnológico de Costa Rica

Abstract

Subdivision is a method to create smooth surfaces
through a refinable schema of polygonal or triangular
meshes. From a mathematical point of view, this technique
is an application of a second generation wavelet analy-
sis. At the same time, this analysis is based on the lifting
schema and does not use any frequency criterion to define
scaling functions or wavelets. This simplifies computational
cost. Yet, a frequency analysis applied to a polygonal mesh,
can provide an intuitive method to modify surface charac-
teristics by creating an analogy to one-dimensional sound
equalization. These foundations can be useful not only as
a surface generation tool, but they are also naturally asso-
ciated to finite element techniques and can be applied to a
wide variety of simulation problems.
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1. Introduction

Subdivision techniques take a control mesh or polyhe-
dron and add new polygons to it by refining its current faces.
These new vertices are then perturbed according to some
stencil rule, adding details and, in most cases, increasing
surfaces’s smoothness. Subdivision techniques only need a
good and fast structure to preserve adjacencies between the
polygons that approximate a surface. These polygons can
be triangles, but many subdivision schemas can be adapted
to other kinds of polygons [3].

As NURBS and Splines [8], subdivision techniques have
a very desirable property: perturbation of one vertex can be
made locally. By using subdivision and an appropriate sten-
cil rule (such as Loop’s [5]), more triangles can be added to
an arbitrary mesh preserving continuity. This gives a nice
tool to generate and manipulate smooth arbitrary surfaces,
topologically equivalent to a basic shape.

An example of this process is shown in figure 1.

Figure 1. A deformed torus. Yellow spheres represent control
points.

2. Equalizing Images and Polyhedra

From a mathematical point of view, equalizing an image
is equivalent to applying an operator to a bidimensional ar-
ray of numbers (a matrix). A frequency interpretation of
this process is given by discrete bidimensional Fourier ba-
sis, which can be considered as a set of eigenvectors of a
given operator [4]. From this discrete approach, it is rel-
atively easy to define a multirresolution analysis (defined
in [7]) for vector spaces of matrices, as an increasing set
of finite-dimensional subspaces generated by a well chosen
basis. These bases are called wavelets. Interpreting these
subspaces and projecting the original matrix on them, we
get a criterion to select coefficients in a basis expansion. As
this criterion is based on a frequency filtering concept, we
have a multirresolutive image equalizer. This is shown in
figure 2.

Equalizing images is a somehow straightforward task be-
cause they can be sampled as regular grids and matrices.
Extending this concept to general polyhedra is not trivial
because they are not necessarily regular and cannot be gen-
erally represented by matrices.
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Figure 2. Original image. Low-pass filter and high-pass filter.

Nevertheless, in 1997, it was shown that subdivision
techniques are a particular case of general multirresolution
analysis on arbitrary topologies [6]. The method used to
build wavelets with this degree of freedom is an application
of the more general lifting method for second generation
wavelets [9]. This technique has no need to use any fre-
quency criterion to build a semiorthogonal multirresolution
analysis. It is generally used to smooth a surface (which is
equivalent to apply a low-pass filter).

3. Vibration Modes of a Polyhedron

In our research, we are trying to find a frequency crite-
rion to control de degree of smoothness produced through
a subdivision schema. As described above, Fourier anal-
ysis on matrices can be considered as a method to exploit
conceptually an eigenvector basis of certain matrices. As
described in [10], eigenvectors of a connectivity matrix can
be considered the vibration modes of a polyhedron. Two
characteristics of this technique is that the number of faces
remains unchanged and it is applied globally. So, being
able to link this approach with the lifting schema, could
produce an equalizing subdivision stencil that could locally
add smooth details or sharp details to a polyhedron. This
could be done according to a criterion defined by the user. A
global sharp surface subdivision process is shown in figure
3. As we pretend to have a better equalizing user’s control
of this, the figure is shown only for illustrative purposes.

Figure 3. A non-smooth subdivision surface

A lifting schema based on frequency can be computa-
tionally slower than Lounsberry’s [6], as it implies to get
eigenvalues of large matrices (as large as the number of
vertices of the polyhedron). Our hypothesis is that eigen-
values of a polyhedron’s connectivity matrix should be nat-
urally associated to its degree of smoothness in the lifting

schema. We believe that the method described in [10] can
be extended into an intuitive frequency-based method to de-
sign second generation wavelets. Equalization to design
wavelets can be used directly on regular grids (such as fig-
ure 2) in a somehow straight application of classical wavelet
theory. Yet, as far as we know, there is no general method
to use the lifting schema with a frequency criterion to create
a subdivision technique based on Fourier coefficients.

4. Future Research

As the lifting schema and subdivision methods can be
used to define functions on a polyhedron, the techniques
described above can be used to define an adaptive finite el-
ement set [1], which can be used in simulation problems
such as radiosity [2]. It gives an intuitive method to con-
struct wavelets based on discrete digital filters. This can
be useful to naturally deal with discontinuities of functions
defined on arbitrary topologies.
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