
Automatic Theory Formation in Graph Theory

HEMERSON PISTORI
�

, JACQUES WAINER
�

�

Departamento de Engenharia de Computação, Universidade Católica Dom Bosco, Campo Grande, MS, Brasil
pistori@lapac.unibosco.br

�

Instituto de Computação, Universidade Estadual de Campinas, Campinas, SP, Brasil
wainer@dcc.unicamp.br

Abstract. This paper presents SCOT, a system for automatic theory construction in the domain of Graph
Theory. Following on the footsteps of the programs ARE [9], HR [1] and Cyrano [6], concept discovery
is modeled as search in a concept space. We propose a classification for discovery heuristics, which takes
into account the main processes related to theory construction: concept construction, example production,
example analysis, conjecture construction, and conjecture analysis.

Keywords machine learning, theory refinement, constructive induction, unsupervised learning.

1 Introduction

Lenat’s program AM was the first automatic theory con-
struction system to attract the attention of AI commu-
nity. Beginning with pre-numerical concepts, it “redis-
covered” some well-known concepts and conjectures in
elementary mathematics [7], such as the prime numbers,
the deMorgan’s Law and the Goldbach’s conjecture.

AM’s initial success and later inability to generate
new results, were analyzed mainly by its creator. AM
represented concepts by LISP programs that generated
examples of the concept, and relied on the syntactic mu-
tation of such code to generate new concepts. Part of the
AM success was attributed to the close mapping between
LISP code and mathematical concepts, so the mutation
of the LISP code of a mathematical concept would very
probably be a interesting mathematical concept. Another
possible explanation for its success is that much of what
it accomplished was in some way encoded into the 243
heuristics and 115 basic concepts [8].

The issue of concept representation in mathemati-
cal discovery systems was further pursued by Epstein [3].
She proposes a hierarchy of representational languages,
the R-languages, for graph theory that uses declarative
expressions. This representation scheme was used in the
program GT (Graph Theorist), that was able to create
new concepts, generate examples of this concepts, pro-
pose new conjectures, and prove theorems.

We implemented a program called SCOT, which is
able to create new concepts, generate and analyze exam-
ples from concepts and propose conjectures. SCOT does
not rely on mutations, like AM, to generate new con-
cepts, but on the idea of operators being applied to one
or two “old” concepts to generate a “new” concept. Fur-
thermore, the language for the description of concepts is
much more fine-grained than GT’s. While GT worked
only with Graph Properties and Graph Classes, SCOT

treats uniformly both graph and other graph components.
Thus SCOT can define concepts like cut vertex, which
could not be discovered as such in GT because it is nei-
ther a Graph, nor a Graph Property (it’s a vertex prop-
erty).

Haase [6], Shen [9], and Bundy [1], propose a con-
cept representation mechanism that is very similar to the
one SCOT uses. It is, basically, a set of operators em-
ployed to create new concepts from old concepts, and a
set of heuristics that determines the concepts and the op-
erators to be used at each step. Given an initial set of con-
cepts, and these operators, one can define concept discov-
ery as the search of “interesting” concepts in this implic-
itly defined concept space. Now its possible to borrow
some concepts from the search theory to concept discov-
ery. Shen, for instance, applies an idea similar to that of
macro operators to improve the concept search.

The operators in SCOT inherit some ideas from Ba-
ckus’ [2] work on functional programming, and are of a
much finer grain than, for example HR’s [1]. Further-
more, operators specialized for the graph theory domain
were developed. In order to deal with the complexity of
generating examples in the graphs domain, we designed
SCOT to generate examples randomly, instead of system-
atically generating a large number of graphs, and to save
some of these examples in a persistent database. When
asked to generate another example, SCOT would ran-
domly choose an example in the database or create a new
one. Furthermore, the generation of examples of different
concepts is run distributedly in many machines.

The issue of discovery heuristics seems to be dealt in
more depth in [1]. That paper suggests some well-defined
measures for concept and operators, such as clarity, par-
simony, and novelty [1]. We used some of these mea-
sures and propose some new ones. Besides, we propose
a classification for the discovery heuristics which relates

Anais do II ENIA (1999) 1–?

2 PISTORI, H. AND WAINER, J.

to its representation mechanisms and scope of applica-
tion, based on the following tasks: concept construction,
example production, example analysis, conjecture con-
struction and conjecture analysis.

The next section introduces the representation mech-
anism for the exploration domain. Then the main control
structure and the heuristics are described. The last section
presents some results, some problems and some sugges-
tions for future work.

2 Domain Representation

The domain of exploration of our system is made up of
concept, conjecture, example and operator objects. The
set of concepts increases by the application of an unary
or binary operator on a previous concept, or pair of con-
cepts (which are called operands). Operators are closed
related to Shen’s Functional Forms and Bundy’s Produc-
tion Rules. Associated to each concept is a procedure that
creates random examples of the concept, when required.
The system guarantees that any concept, built-in or dis-
covered, is always able to supply examples of itself. Con-
jectures are restricted to a simple relation between a pair
of concepts. We describe now, in detail, each of SCOT’s
domain representation objects.

2.1 Concepts

The main attributes of a concept are domain, type, and
origin. The domain of a concept

�
is another concept�

and it indicates that in order to obtain an example of�
it is required an example of

�
. For instance, the do-

main of the VERTEX DEGREE concept is VERTEX. While
the domain of VERTEX is GRAPH. The GRAPH concept
has no domain. The type of a concept determines the in-
ternal representation for examples of the concept. It is
restricted to the following grammar (where S is the only
non-terminal symbol):

S ��� S ����� S �
	��
� S ��� B � I � G � V
where B stands for Boolean, I for Integer, � S � for a set of
type S elements, � S ��	 for a set with fixed cardinality n,
� S � stands for a sequence of type S elements, G stands for
an undirected graph and V for a vertex.

Graphs are represented as a list where the first ele-
ment is a sequence of integers representing the vertices
and the second element is a sequence of pairs represent-
ing graph edges. For instance, the list �����
���������������������
�
�����
����� represents the �! graph.

The origin of a concept indicates if the concept is
a built-in concept or if it was discovered by the system.
In a built-in concept, the origin carries a predefined code,
which is called when an example of the concept is re-
quested. In a discovered concept, the origin holds the op-
erator and operands (concepts), used in its creation. This

information is used in the example generation process.
Built-in concepts are divided into graph specific con-

cepts and logical/numeric concepts. The graph specific
concepts are: a graph, a vertex (of a graph), all vertices
(of a graph), a pair of vertices (of a graph), all pair of
vertices (of a graph), an edge (of a graph), all edges (of
a graph), neighborhood (of a vertex), all paths from a
vertex, and a vertex-set induced subgraph (of a graph).
The majority of the logical/numeric concepts are tests on
boolean or integer sequences, like: all boolean values are
true, there is no true value in the sequence, all integers are
greater than zero, and so on. SCOT never combines two
“non-graph” concept, so that it can never “escape” from
the graph domain.

2.2 Examples

An example is an object with a content attribute, a domain
example attribute (which holds an example of the concept
domain, when it is the case) and a concept attribute (link-
ing examples to concepts). Figure 1 shows examples of 4
related concepts (from right to left): GRAPH, ALL EDGES,
ALL CUT EDGES CLASSIFIER

�

and ALL CUT EDGES. The
GRAPH concept generates a random graph example. The
ALL EDGES takes this graph example as its domain ex-
ample and generates an example containing all the edges
of the graph. The ALL CUT EDGES CLASSIFIER con-
cept does not have a direct counterpart in graph theory. It
just maps each edge of a graph to a boolean that indicates
if the edge is a cut edge (in that graph). The origin of
this concept indicates that it is the application of the ATA

(Apply To All) operator on the concept 2 (Not shown in
figure 1) and 3 (ALL EDGES). Concept 2 is the CUT EDGE

CLASSIFIER, which is of type boolean (as any classifier)
and has the concept AN EDGE (of a graph) as its domain.
The ATA operator is used to apply a particular boolean
type concept (Eg. CUT EDGE CLASSIFIER) to each ele-
ment of a set (or sequence) (Eg. The content of a ALL

EDGES example).
The ALL CUT EDGES selects from all the graph’s

edges the ones that are mapped to “true” by the ALL CUT

EDGES CLASSIFIER example. The origin of the ALL CUT

EDGES concept indicates that it is the application of the
INVT operator on the ALL CUT EDGES CLASSIFIER con-
cept. The INVT exploit the “domain chain” in order to
build examples. For instance, to construct an example for
the ALL CUT EDGES concept, the INVT operator which is
the origin of the concept, needs not only its domain ex-
ample (the ALL CUT EDGES CLASSIFIER example – a list
of booleans) but also its domain’s domain example (a list
of pairs of vertices – the edges). INVT selects from the
domain’s domain example all the items that are mapped
to a “true” in the domain example.
"
A classifier is a boolean type concept. It resembles what Epstein

has called a tester [4]

Anais do II ENIA, julho de 1999

AUTOMATIC THEORY FORMATION IN GRAPH THEORY 3

((0 1) (0 2)
(1 2) (2 3)) (0 2) (1 2) (2 3))

((0 1 2 3) (0 1)

22

Origin: InvT(4)
Domain:
Type: {{V} }

Origin: ata(2,3)
Domain:
Type: [B]

Origin: Built-in

Type: {{V} }

Origin: Built-in
Domain: NO
Type: G

Domain:

All Cut Edges (5) All Cut Edges Classifier (4) All Edges (3) Graph (1)

C
O

N
C

E
PT

S
E

X
A

M
PL

E
S Concept Domain

Content:

((2 3))

Concept Domain
Content:

(F F F T)

Concept Domain
Content:

Concept
Content:

Domain

Figure 1: Examples and Concepts

2.3 Operators

The basis for SCOT capabilities to create new concepts
is the operators, which are extensions of the functional
forms introduced by Backus [2]. Each operator must im-
plement three functionalities: (1) The Applicability Ver-
ification that verifies if the operator can be applied to a
concept (or pair of concepts, in the case of binary opera-
tors), (2) The Concept Generation that applies the opera-
tor to create a new concept and (3) the Example Genera-
tion that generates examples for the new concepts.

We have created a diagram to represent concepts,
which summarizes all the information in figure 1. Fig-
ure 2 is the diagrammatic representation of those con-
cepts, where circles represent the concepts (dashed-lines
denoting built-in concepts), the labels in the circles rep-
resent the type of the concept, a bold line indicate the
domain relation, and a thin line represents the operator
application. For example, concept 4 (ALL CUT EDGES

CLASSIFIER) in figure 2 has as input (domain) the con-
cept 3, its type is a set of booleans, and it is created by
the application of the operator ATA on concepts 2 and 3.
The two applications of the composition operator is used
to adjust the domain of the ALL CUT EDGES concept to be
the GRAPH concept. The diagram is not complete since it
does not show neither the domain nor the origin of con-
cept 2, which would have required the addition of sev-
eral new circles and lines (Complete information about
concept 2 could be represented hierarchically, in another
diagram).

2.4 Macro-Operators

We have observed that some sequences of operators are
common in the generation of interesting concepts. We
call those templates of application of concepts a macro-
operator. The same notation introduced in the last section
(Figure 2) can be used in the visualization of a macro-
operator. For instance, one of the macro-operators used
by SCOT is the one described in figure 2 when concepts
2 and 3 are taken as variables. This macro-operator takes
two concepts such that they can be the operands of the

ATA operator and after a sequence of operators (ATA, INVT

and 2 Compositions) application creates a concept of the
same type and domain as the second argument. Macro-
operators empower SCOT with the capability to construct
complex concepts (many operators) in one single step.

2.5 Conjectures

A conjecture object holds a relation between two classi-
fiers. These classifiers, that must have the same domain,
are called the Left and the Right concepts. SCOT gener-
ates a set of examples of the domain of these two classi-
fiers, and applies both of these concepts to classify each
example of this set. Based on this results, SCOT con-
jecture induction heuristic (Explained in the Conjecture
Analysis section) infers one of the following relations:

Equality The ������� concept returns true if and only if,
the �	��

�
� concept returns true

Left implies Right The �	��

��� concept always returns
true when the ������� returns true. Symmetrically,
�	��
���� implies ������� .

Undetermined No previous relation applies but there are
some domain examples for which both the ������� and
the �	��

�
� return true.

No relation No previous relation applies.

3 Control and Heuristics

SCOT runs cyclically its five modules: concept construc-
tion, example analysis, conjecture construction, conjec-
ture analysis and conjecture refinement, until a time limit
is reached. We call the execution of the five modules a
cycle, and the execution of as many cycles as possible
within the maximum time limit a run. All concepts and
examples created in a cycle are available in all other cy-
cles. At the end of the run, the “interesting” concepts and
conjectures discovered and their examples are saved to a
file. A new run may read in data saved by old runs and
thus start with more than the initial concepts.

Anais do II ENIA, julho de 1999

4 PISTORI, H. AND WAINER, J.

2{{V} }2

2{{V} }

6
2{{V} }

71 - Graph

2 - Cut Edge Classifier

3 - All Edges

4 - All Cut Edges Classifier

5 - All Cut Edges

7 - All Cut Edges (of a Graph)

G B [B]

1 4 5

InvT

2 3

{{V} }

Ata

Compos.Compos.

Figure 2: All cut edges concept

The example and conjecture analysis modules may
be run distributedly, each machine dealing with a disjoint
set of concepts or conjectures. In this way, all example
generation overhead, which is usually a very costly pro-
cess in graph theory domain, may be lessened.

We have seven distinct groups of heuristics, each
group with a specific representation mechanism: macro-
operators, operator evaluation function, concept evalua-
tion function, example evaluation function, conjecture in-
duction heuristic, conjecture refinement heuristic and the
numeric thresholds. The first 6 groups where explained
previously in this paper and the numeric thresholds are
numbers like the maximum number of concepts that can
be generated in a cycle, the maximum number of exam-
ples to be generated in the example analysis module, and
so on.

There are still some “heuristic reasoning” that are
not in these groups. They are related to how one selects
the concepts and operators that are to appear in the ini-
tial knowledge database. For instance, numbers greater
than 3 never happen in external concepts (resembling an
heuristic used by Lenat), in this way, we have in our
initial database the concepts ALL INTEGERS EQUALS 0,
ALL INTEGERS EQUALS 1, ..., ALL INTEGERS EQUAL 3,
but not the concept ALL INTEGERS EQUALS 4.

3.1 Concept Construction

The concept construction module applies operators and
macro-operators to create new concepts, until a time limit
is reached. Each operator and macro-operator has a nu-
merical value that determines the probability that they
will be chosen. Concepts on which the operators will
be applied are chosen based on a numeric value called
concept worth, which is dynamically calculated in each
cycle by the concept evaluation function. This function
combines some other numeric values associated with the
concept, such as: the number of conjectures involving the
concept, the mean time for generating examples for this
concept, and the complexity of the concept’s generation
tree (that is the number of operators and other concepts
that make up this concept). The two other values taken

into consideration by this evaluation function are a user
worth value, which allow the experimenter to focus the
system into a set of concepts, and the examples worth
which is calculated by the example analysis module and
reflects how “interesting” are the examples for this con-
cept. The concept worth value is also used in the Con-
jecture Construction module and in the selection of the
concepts to be saved in the end of a run.

3.2 Example Analysis

The example analysis module generates the examples for
the concepts created in the previous module, and anal-
yse these examples. Example generation is an expensive
operation in SCOT because it uses a generate and test
approach: all examples end up referring to a graph in its
domain chain, so a random graph is generated and all fur-
ther operations will either manipulate that graph or refuse
it (because it does not satisfy a property), and then a new
random graph must be generated and tested. There is an
heuristic number of how many times will the module try
to generate an example of a concept before giving up.

When 40 (another numeric threshold) examples of
the concept have been generated, the module will deter-
mine how “interesting” are these examples and set the
concept’s example worth value. There are some simple
heuristics to determine if a single example and if a set
of examples are interesting. For example, if all exam-
ples of a concept have the same content, that is, the set
of examples really contain only one example, the concept
will receive a very low example-worth value. If the sys-
tem could not generate a single example for that concept
in the allowed time, the concept will receive the lowest
example worth value. If all examples of a graph concept
are empty graphs (graphs without edges) then the concept
will also receive a very low example-worth value.

3.3 Conjecture Construction

Conjecture construction is a rather simple module that
chooses pairs of classifiers with the same domain as can-
didates for a conjecture. Concepts with higher concept

Anais do II ENIA, julho de 1999

AUTOMATIC THEORY FORMATION IN GRAPH THEORY 5

Figure 3: Conjecture Induction Heuristic

Relation TT TF FT
Equivalence � ����� ����� ���	�
� implies � � ��� � �
�	� ���	�
� implies � � ��� ����� � �����
Undetermined � ��� ����� �
���
No Relation None of the previous applies

worth are favored in this selection process. After a fixed
number of such conjectures have been constructed, the
conjecture analysis phase is started.

3.4 Conjecture Analysis

The conjecture analysis module tries to infer, for each
conjecture, the relation between its two classifiers. It gen-
erates 100 examples of the common domain concept and
calculates the relative number of examples from the set
that is classified as “true” by both classifiers (TT), and
the number of examples that are classified as “true” by
one but not by the other classifier (TF and FT).

Given the TT, TF and FT values, the Conjecture In-
duction Heuristic (represented in figure 4) proposes a re-
lation for the two classifiers in the concept. For example
if more than 2% of the examples were classified as “true”
by both concepts, and more than 10% of the examples
were classified as “true” by the ��� ��� concept but as false
by the �	��

��� concept, and none was classified as “true”
by �	��
���� and “false” by ������� , then the system will con-
jecture that all examples of the � ��

�
� concept are also
examples of the ������� concept (� implies �).

3.5 Conjecture Refinement

The conjecture refinement module creates new conjecture
objects substituting a concept of the pair for some of its
specializations or generalizations. The conjecture refine-
ment goal is to increase the number of equivalence and
implication conjectures. This module may also request
the creation of generalizations or specializations of some
concepts. This requests are kept in an agenda, accessible
to all modules. Thus if a specialization of a concept is
placed into the agenda, the concept creation module will
first attempt to comply with the request before creating
“random” concepts. Similarly the conjecture construc-
tion module will first try to construct the conjectures that
involves the specialization that was requested.

Besides the implications discovered empirically in
the conjecture analysis module, SCOT has another mech-
anism, based on macro-operators, to find specializations
and generalizations. Relations imposed by macro-ope-
ra-tors are logical and not empirical. For instance, the

concept created by the macro-operator described in fig-
ure 2 (with concepts 2 and 3 taken as variables) is always
a specialization of the concept that is placed on the po-
sition of concept 3 (In that example, ALL CUT EDGES is
a specialization of ALL EDGES). Thus the first form of
specializing a concept is applying such a macro-operator.

The conjecture refinement heuristic is a function that,
given two conjecture objects, decides which is the most
“valuable”. It evaluates the relation and the TT,TF and
FT values of each conjecture. If the relation of the two
conjecture is not the same, the heuristic uses the follow-
ing ordering to decide which is the better one: equality �
implication � undetermined � no relation. If the relation
is the same, the system decides for the conjecture with the
lesser ��������� value, which roughly indicates that the
conjecture is nearer the equality relation. The conjecture
refinement module uses this heuristic in order to evaluate
if a given substitution should be done.

3.6 An example

To illustrate the operation of SCOT, we will show how
the modules and the specialization/generalization mech-
anism were used to propose the conjecture that all cycle
graphs are regular.

� Applying a macro-operator � � on ALL PATHS (leav-
ing a vertex) and PAIR OF VERTICES the system dis-
covers the concept ALL PATHS CONNECTING TWO

VERTICES.

� Applying a macro-operator � � on NEIGHBORHOOD

(of a vertex) SCOT gets the VERTEX DEGREE con-
cept.

� Applying a macro-operator � on ALL PATHS CON-
NECTING TWO VERTICES, ALL PAIR OF VERTICES

and ALL INTEGERS GREATER THAN 0 the system
gets the CONNECTED GRAPH (Graphs where there
is at least one path connecting each pair of vertices)
classifier.

� Substituting the concept ALL INTEGERS GREATER

THAN 0 for its specialization, ALL INTEGERS EQUAL

TO 1, in the definition of CONNECTED GRAPH, the
system generates the CYCLE GRAPH (Graphs where
there is one and just one path connecting each pair
of vertices

�

) classifier, as a specialization of the for-
mer.

� Applying the same � on VERTEX DEGREE, ALL

VERTICES (of a graph) and ALL INTEGERS EQUAL

TO EACH OTHER, the system creates the REGULAR

GRAPH classifier.
�
This definiton, although unusual, resembles more closely that of

SCOT

Anais do II ENIA, julho de 1999

6 PISTORI, H. AND WAINER, J.

� The system creates a conjecture object � � involving
the connected and regular classifier and concludes
for an undetermined relation (� � � ��� , ��� �
����� , ��� � ��� �).

� Trying to refine � � , the system creates a new con-
jecture by substituting CONNECTED GRAPH by the
CYCLE GRAPH (known, by SCOT, as an specializa-
tion of the former). Analyzing this new conjecture
SCOT concludes for a “left implies right” relation
(� ����� � , ��� � ��� , ��� � �����).

These steps were not taken one immediately after the
other, but were taken in that order intermingled with other
steps, in a single run.

4 Conclusions

The programs ARE [9] and Cyrano [6] work in the same
domain as AM (number theory and arithmetic), HR [1]
addresses Group Theory and Number Theory. Although,
theoretically all these programs could be adapted to work
in other domains, SCOT seems to be the first system, of
this kind, whose natural domain of exploration is Graph
Theory (Grafitti [5] and GT [3] work in Graph Theory but
taking a very different approach). SCOT also seems to be
the first system to use distributed computation in order to
improve its performance.

Another improvement is related to the way heuris-
tics are organized and represented in SCOT. We have iden-
tified 6 very distinct classes of heuristics, each with rather
particular characteristics. For instance, the macro-ope-
ra-tors deals only with structural properties of concepts,
whereas the example analysis heuristics (summarized in a
single number by the example evaluation function) works
with properties of concept examples. The identification
of these classes allowed for the utilization of a more re-
strictive (and structured) representation mechanism (for
each class), without much loss in expressiveness.

In a 8-hour run, using 14 machines for the distributed
modules, SCOT would generate around 600 to 800 con-
cepts with non-zero worth value (SCOT begins with a
set of 15 graph theory concepts, 30 logic and numerical
concepts, 17 operators and 6 macro-operators). We rec-
ognized among the concepts generated by SCOT many
human relevant concepts such as complete, regular, and
empty graphs, cycle graphs, connected graphs, cut edges,
trees, and so on (in fact, we coded those concepts in
SCOT’s language and searched for them in the files of
concepts generated). We also recognized conjectures in-
volving tho-se concepts, such as “all trees are connected”
and “all complete graphs are regular.”

An interesting line for future research would be the
assumption that SCOT and maybe other discovery sys-
tems should really work in a supervised way, not as an
autonomous discoverer, but as a helper for researchers in

a particular domain. We are currently tuning SCOT so
that it centers its explorations around the concepts that a
researcher in graph theory is interested in. In this super-
vised mode, SCOT would generate few concepts and ex-
amples for those concepts, and wait for an external eval-
uation of their “interestingness” before combining them
into yet other concepts.

A second line of research is based on the adaptation
of some pattern recognition techniques for the automatic
discovering of new macro-operators. First of all, we must
build a large database of well-known graph theory con-
cepts, represented using operators and built-in concepts.
Then, we must search these database for some pattern
(macro-operator) in the operators application (These prob-
lem is worsened by the fact that different groups of con-
cepts can induce different patterns). Luckily, these newly
discovered macro-operators could be used by SCOT to
produce interesting concepts that do not appear in the
large database.

References

[1] S. Colton A. Bundy and T. Walsh. HR - a system
for machine discovery in finite algebras. ECAI 98
Workshop Programme, 1998.

[2] John F. Backus. ACM Turing Award Lectures, the
first twenty years, chapter Can Programming Be Lib-
erated from the von Neumann Style? A Functional
Style and Its Algebra of Programs, pages 63–130.
Addison-Wesley, 1987.

[3] S. L. Epstein. Learning and discovery: One system’s
search for mathematical knowledge. Computational
Intelligence, 4-1, 1988.

[4] S. L. Epstein and N. S. Sridharan. Knowledge repre-
sentation for mathematical discovery: Three experi-
ments in graph theory. Applied Intelligence, 1, 1991.

[5] S Fajtlowicz. On conjectures of graffiti. Discrete
Mathematics, 23:113–118, 1998.

[6] K. Haase. Discovery systems. Proceedings of the
7th European Conference on Artificial Intelligence,
1986.

[7] Douglas B. Lenat. Why AM and EURISKO appear
to work. Journal of Artificial Intelligence, 23, 1984.

[8] G. D. Ritchie and F. K. Hanna. AM: A case study
in AI methodology. Journal of Artificial Intelligence,
23, 1984.

[9] W. Shen. Functional transformations in AI discovery
systems. Artificial Intelligence, 41, 1989.

Anais do II ENIA, julho de 1999

