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This paper proposes a novel way to combine different observation models in a particle filter framework.
This, so called, auto-adjustable observation model, enhance the particle filter accuracy when the tracked
objects overlap without infringing a great runtime penalty to the whole tracking system. The approach
has been tested under two important real world situations related to animal behavior: mice and larvae
tracking. The proposal was compared to some state-of-art approaches and the results show, under the
datasets tested, that a good trade-off between accuracy and runtime can be achieved using an auto-
adjustable observation model.
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1. Introduction

Visual tracking of multiple objects is an essential task for many
applications and has been successfully used in animal behavior
analysis. Scientific experiments in laboratory with live animals
need several hours or even days of constant observation by the re-
searcher. The observation task for a long period of time by a human
observer is a very boring and fatiguing work and most of the time
the results obtained are not reliable or reproducible.

A variety of algorithms for tracking multiple objects has been
proposed. Many of them are based on predictive filters, in order
to achieve robustness to occlusion and real time performance. Pre-
dictive filters use a stochastic model of the tracked objects dynam-
ics in order to propagate the state of the system, from frame to
frame. The predicted state is combined with information derived
from an observation model, to estimate the current state of the sys-
tem (Funk, 2003).

This paper extends the work proposed in our previous work
(Gongalves et al., 2007a) with (1) an updated literature review,
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(2) a new set of experiments on another real-life problem (larvae
tracking) and (3) an improved explanation and clarifications on
the tracking approach proposed in our previous work.

The tracking approach proposed is based on particle filter aug-
mented with an auto-adjustable observation model. This auto-
adjustable observation model combines, dynamically, a connected
component analysis and a k-means based model. In order to deal
with situations where mice are in contact or under partial occlu-
sions, the k-means algorithm (Har-Peled and Sadri, 2005; Malyszko
and Wierzchon, 2007) is used. The k-means solve the problem of
tracking with contact between objects, but with a relatively high
processing time. Conversely, connected component analysis pro-
duces a faster tracker but can not handle situations where the ob-
jects are in contact. In order to obtain a balance between tracking
precision and reduced runtime, in this paper it is proposed an
observation model that can, automatically, change between k-
means and connected component analysis. The dynamics model
used in this paper is inspired in the random walk (Bartumeus
et al., 2005) motion model, whose parameters have been set specif-
ically for mice and larvae movements.

The tracker was analyzed using image shots in situations where
the objects are both in contact or separated from each other. The
particle filter performance was compared to that of human special-
ists, in the open-field experiment. This experiment proved to be an
interesting way to compare tracking algorithms, as it provides
ground truth data related to the objects spatial position over a
observation section. Our proposal demonstrated to be correct
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when compared to ground truth data (collected by humans) and to
be robust and efficient, when compared to other approaches (sin-
gle observation model).

The paper is organized as follows. Section 2 describes the mice
and larvae tracking problem. Section 3 presents related work on
the application of computer vision to animal behavior identifica-
tion and on particle filters. Section 4 briefly reviews particle filters
and explains the auto-adjustable observation model. The experi-
ments performed and the results of the proposed approach using
the particle filter applied to mice and larvae tracking are described
in the Section 5. Finally, the conclusions are presented and future
works are discussed in Section 6.

2. Background

Computer vision has been increasingly used to automate scien-
tific experiments in laboratory. Spink et al. (2001) describes how
video-based tracking allows researchers to study the animal
behavior in a reliable and consistent way for a long period of time
to test new medicines on mice. The researcher is interested in how
the behavior patterns change during exposure to pharmacological
agents. In general, these activities are applied in large scale, using
multiple doses and different animals, in order to ensure reliable
statistics.

In particular, for measuring motion behavior (e.g. track length,
velocity, acceleration), unusual movements that happen after long
periods of inactivity and the ones that occur during many hours or
days (daily behavior analysis, for example), video-based tracking is
an interesting alternative to a human observer, who is unable to
perform these tasks efficiently (Spink et al., 2001). In addition,
automatic tracking does not suffer from fatigue or distraction
and this approach eliminates the subjectivity when various observ-
ers classify the same action performed by the animal. This paper
presents two different real world situations of animal behavior
analysis: the mice and larvae tracking.

Tracking multiple mice is an interesting task because mice are
deformable and, in some cases, indistinguishable objects. The ani-
mal behavior along these experiments may be recorded, automat-
ically or semi-automatically, in video. During the experiment, the
researcher observes the animal and records information about ac-
tions related to specific behavior of interest. Video-based tracking
can aggregate automatic pattern recognition, applied to the cap-
tured images, to extract measurements from animal behavior.

Tracking multiple larvae has recently turned into a very impor-
tant task for public health. In Brazil, Dengue causalities, according
to the Ministry of Health, affected around 128.13 cases by 1,00,000
inhabitants. Dengue control has been limited to combating the vec-
tor using synthetic and biological insecticides. However, due to
continuous use, the vector, Aedes aegypti, has become resistant to
some chemical products. The ecological damage produced by syn-
thetic insecticides has motivated scientific research towards find-
ing active products of botanical origin, and a number of species
have been investigated.

In order to access the efficacy of this products, bioassays are
carried out as five replicates in a climate-controlled environment.
Twenty third-instar larvae of A. aegypti are placed in a 25 ml test
solution. Essays are conducted using the same number of larvae
in a DMSO-distilled water solution. The larvae mortality after
24 h are recorded. Total absence of larval movement as well as
dark body color and cephalic capsule are used as an indicative of
death. A computer vision system is being devised to automate this
process and will provide greater reliability, reproducibility and ac-
cess to information not easily obtained by humans, as the precise
time of death of each larva. As the larva is placed in a liquid solu-
tion, that is constantly moving due to the live larvae, the “absence

of movement” can not be easily identified using simple standard
computer vision techniques.

In both cases, mice and larvae, tracking multiple objects is re-
quired. Basically, tracking multiple objects consists in determining
which and how many objects in the scene will be tracked and then
locating each one of them in consecutive frames. This task receives
a special attention in computer vision; however, it is still an open
and challenging problem due to the variation in the conditions of
lighting, presence of noise and potentially ambiguous conditions,
such as occlusion of multiple similar objects. Some examples of
applications of tracking multiple objects are tracking multiple ani-
mals to automate experiments with laboratory animals (Branson
and Belongie, 2005), social insect interaction analysis (Zia Khan
Balch and Dellaert, 2003; Morais et al., 2005), monitoring people
for tracking players (Okuma et al., 2004), identification of 3-d hu-
man motion (Choo and Fleet, 2001).

3. Related work

There are many computer vision works approaching the prob-
lem of automatic animal behavior analysis and this section briefly
report on some of these works. This section also presents some re-
cent work related to the use of particle filters in tracking multiple
objects in images.

3.1. Automatic animal identification and behavior analysis

Automation of animals identification and behavior analysis,
both in controlled or in wildlife situations, is becoming a very
important topic in Computer Vision. For instance, Burghardt and
Campbell (2007) combined several computer vision techniques,
like feature prediction trees and shape contexts in order to find
and identify African penguins living in a colony. Using a new class
of human psychology inspired structural descriptors, Chia et al.
(2008) presented some promising results on the automatic identi-
fication of four-legged animals, including cows and horses. The
identification of snakes attack behavior has been tackled, using a
Hidden Markov Model framework, by Gongalves et al. (2007b).

Haar-like features and AdaBoost classifiers, integrated with a
low-level feature tracker, were used in (Burghardt and Calic,
2006) to detect and track lions on wildlife videos. Two recent
works tackle the problem of insects identification and tracking
using techniques based on invariant moments and concatenated
histograms of local appearance features (Kumar et al., 2007; Larios
et al., 2007). Other species whose automated monitoring are being
pursued using computer vision techniques include fishes (Zhou
and Clark, 2006; Morais et al., 2005), bears (Wawerla et al., 2009)
and birds (Figueiredo et al., 2003; Tweed and Calway, 2002).

3.2. Particle filters

Particle filter has been extensively used in tracking multiple ob-
jects (Hue et al., 2001; Moreno-Noguer and Sanfeliu, 2005),
employing visual (e.g. color, texture), geometric (e.g. contours,
shape) and motion features (Moreno-Noguer and Sanfeliu, 2005;
Okuma et al., 2004; Hue et al., 2001). In (Moreno-Noguer and San-
feliu, 2005) a robust framework for tracking rigid and non-rigid ob-
jects was developed. The particle filter implementation was based
on visual and geometric features. The framework was evaluated in
two experiments, a book boundary tracking and a moving leave, in
situations that other algorithms may fail.

Particle filter has been used to track objects in different do-
mains. Chakravarty and Jarvis (2006) apply particle filter to track
multiple persons using visual features and Vacek et al. (2007)
use particle filter and lane detection to track road marking in an
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autonomous vehicle. Krahnstoever et al. (2001) use particle filter
for tracking articulated objects.

Branson and Belongie (2005) propose an algorithm for tracking
the contours of multiple mice. The experiments used frames cap-
tured from a side view of the cage where the mice are inserted
and frequently occlude each other. Their algorithm that combines
multiple blob detection and a contour tracker demonstrates an
acceptable performance, mainly in occlusion. In (Morais et al.,
2005), a particle filter tracker is applied to track fishes. Tracking
is based on the multitarget likelihood function and a set of 2000
particles.

Many new extensions to the particle filter approach, that can
handle the very large search spaces associated with articulated ob-
jects tracking, are being developed. Some of this extensions are the
Subspace Hierarchical Particle Filter (Branddo et al., 2006) and the
Smart Particle Filters, which wraps a particle filter around multiple
Stochastic Meta-Descendent trackers (Bray et al., 2007). Other
extensions, that share the same motivations as the proposal pre-
sented in this paper, are the ones that dynamically combine differ-
ent observations or dynamics models into the same framework, as
the work of Gao et al. (2008) and Zou et al. (2008). The use of k-
means and connected component analysis as observation models
has been proposed in (Micilotta, 2004), however, differently from
the work presented here, in their proposal there was no provision
on how one of these models should be chosen. In our work, the sys-
tem automatically decide, heuristically, when k-means or con-
nected component analysis are used. In this way, during tracking,
the system can change many times between k-means and con-
nected component analysis, providing a balance between tracking
accuracy and runtime speed.

4. Particle filter with an auto-adjustable observation model

The following sections describe the particle filter observation
and dynamic models used in this work.

4.1. Auto-adjustable observation model

The observation model combines a k-means based and a con-
nected component analysis based model. The connected compo-
nent analysis based model uses the blobs of the segmented
image to infer the center of mass and the other parameters of an
ellipse that approximates the mice contour. This inference is easily
carried out using an observation model based on connected com-
ponent analysis when the objects have no contact among them-
selves. The main problem for extracting the system state, in this
case, is the constant contact between objects, as it is shown in
Fig. 1, in the mice domain problem. The contact between objects
results in a single blob in the image that makes the task of differ-
entiating among the several objects very difficulty.

To deal with this special situation of merged objects owe can
use some a priori information about the object model in order to
reduce the observation uncertainty. In this situation, the observa-
tion model is dynamically modified to infer the parameters of k ob-
jects in the scene using the standard k-means algorithm (Har-Peled
and Sadri, 2005; Malyszko and Wierzchon, 2007). The main idea is
to apply k-means to cluster the pixels in the merged blob in order
to split the objects, considering that k, the number of objects in the
scene, is known. This is usually the case in problems related to lab-
oratory animals tracking.

To reduce the processing cost, the center of each object is ini-
tialized with its position in the previous frame. Each pixel marked
as foreground, in the segmented image, is attributed to the closest
center using the Euclidean distance from that pixel position to each
center. Fig. 1 shows an example of the results obtained using this
technique.

After the attribution step, the center of each pixel group is re-
calculated using the mean of the pixels positions. The attribution
and the calculation step are repeated until it does not have a signif-
icant change, 7, between the current center and the previous one.
In this application, five iterations are necessary, on average, and
0.1 was experimentally used for 7. The parameters of the ellipse
are extracted using the pixels attributed to the center of each
group.

The problem with k-means, in comparison to the standard con-
nected component analysis algorithm, is related to its higher pro-
cessing time. The observation model is then changed,
dynamically, between k-means and connected component
analysis, based on a threshold that heuristically identify animals
contact situations, so that k-means is used only when needed,
resulting in an auto-adjustable observation model. The experi-
ments in the next section will show that a good trade-off of track-
ing precision and computing time consumption can be attained
with this approach.

4.2. Dynamic model

To obtain a robust particle filter, it is important to model the dy-
namic behavior of the objects in the system. Both the mice and lar-
vae movement, tackled in this paper, can be fit by random walk
models that are probabilistic discrete step models that involve
strong simplifications of an animal movement. It consists in a dis-
crete series of displacement events separated by reorientation
events (Bartumeus et al., 2005).

The dynamic model inspired by random walk motion character-
izes a random motion and can be described as:

&) =X 1 + 7o) xV (1)

where (o) is randomly generated through a Gaussian number gen-
erator with standard deviation ¢ and V is the velocity of the object.

ey

Fig. 1. Original image (left), segmented image using background subtraction (center) and the results of the k-means clustering procedure with results shown in ellipses

(right).
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Fig. 2. The 12 equal area regions used to provide a coarse tracking annotation for
the open-field mice experiment. There is only three mice in this arena, the fourth
mouse in the lower right corner is just a mirror reflection due to the acrylic wall
that surrounds the arena. This mirror image problem is solved using a simple
segmentation procedure that isolate the circular arena.

This model is interesting for objects that do not possess a stan-
dard movement. However, the parameters chosen should repre-
sent the dynamic of the object, as the velocity. These parameters
should be carefully chosen once a high or low velocity can diminish
the performance of the particle filter.

5. Experiments and results

Two sets of experiments have been devised to access the perfor-
mance of the proposed approach. The first, using mice videos, has
been first presented in (Gongalves et al.,, 2007a), and has been
reproduced here, with some presentation improvements. The sec-
ond is a new experiment that used images of Aedes aegypt larvae
obtained during real essays aimed at testing the efficacy of a new
biological insecticide. In both experiments, the state of the system,
in the particle filter, is represented by a multidimensional variable
X, = [xym,m; 0], that approximates the contour of each animal by
an ellipse, where (x,y) is its center point, m, and m; are the major
and minor axis, respectively, and 6 is the inclination angle.
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Fig. 4. Example of mice not in contact. The particles distribution for each of the
three particle filters associated with each mouse is shown in different colors (right).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.1. Mice tracking

In the first experiment, the problem to be investigated is the
tracking of four mice in an experiment called open field (Eilam,
2003). This experiment is carried out in a cylindrical arena sur-
rounded by acrylic walls with approximately 30 cm of height.
The arena of the experiment is divided in 12 regions with the same
area. The top view of the experiment with the 12 regions is shown
in Fig. 2. Each mouse has been associated with a different particle
filter, all sharing the same observation and dynamic model.

In order to evaluate the efficiency of the implemented particle
filter, the tracking results where compared to that of a trained hu-
man, using a standard methodology developed to track, without
automation and using a coarse position system, the mice in the
arena. This methodology associates one of each of the 12 arena re-
gions to each mouse, in accordance to a visual approximation of its
center of mass. The region supplied by the tracking algorithm is
compared to the ground truth region (assigned by humans), pro-
viding a correct classification rate. A special situation occurs in
images where the manual marking is not easily found, i.e., situa-
tions where the mouse is in a border between regions and the spe-
cialist is not sure about which region the mouse is in. In this
situations, the ground-truth region was chosen to be the region re-
corded in the previous frame, following the recommendation of an
expert from the UCDB’s Biotechnology Department (Schiaveto,
2007).

In this experiment, image shots, taken from a camera placed
over the open field have been used. Shots where the mice are in
contact and in partial occlusion have been chosen. This image shots
have been extracted using videos recorded by a digital camera
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Fig. 3. Number of particles versus correct classification for mice without contact.
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Canon Powershot A80, with resolution of 320 x 240 pixels. Later,
the frames have been segmented using background subtraction.
All the tests have been performed using a computer with a P4
2.8 GHz processor, 512MB of RAM and a Linux operating system
with Kernel version 2.4.

-
N

Four quantitative and one qualitative particle filter parameters
variations were explored during the experiments. For the dynamic
model, the parameters varied were the standard deviation ¢ and
the velocity in the X and Y direction of the random walk model.
For the observation model, one based on connected component
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Fig. 5. Runtime (in seconds) over the number of particles (horizontal axis). The results using the auto-adjustable observation model is shown in red and is labelled “k means-
Blobs”. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Number of particle versus correct classification rate for mice in contact.

Fig. 7. Example of tracking results when mice are in contact.
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analysis, another based on the k-means algorithm and a third one
based on the proposed auto-adjustable observation model, com-
bining the two previous models, were tested. The last parameter
tested were the number of particles of the particle filter. The par-
ticle filter was evaluated on 54 images where 4 mice move sepa-
rately, that is with no contact and 96 images where mice move
in clusters, in contact with others.

The results are presented in Figs. 3, 5 and 6. In Fig. 3, the graphic
presents the variation in correct classification rate as the number
of particles grows for image shots where the mice are not in con-
tact. Only the mean correct classification rate for the other three
quantitative parameters variations is plotted. Both models, con-
nected components and k-means, presented classification rates
above 97%, with just 100 particles. The graphic shows that the
observation models based on connected components analysis and
k-means achieves practically the same good performance when

Fig. 8. Example of tracking results for three mice and using 1000 particles in the
filter.

the mice move with no contact with others (see an example in
Fig. 4).

The relation between the number of particles and the runtime
(in seconds) is presented in Fig. 5. The observation model based
on connected component analysis was faster in relation to the
model based on k-means, but both presented a constant runtime
after 700 particles. The higher runtime of the k-means model in
Fig. 5 and the similarity in correct classification rate results for
both models in situations where the mice move separately (as in
Fig. 3, for example), inspired the present approach that combines
the two models. Experiments using this combination (the auto-
adjustable observation model) were carried out in the following
way: when the image does not have mice interaction the observa-
tion based on connected components is utilized and when the im-
age contains mice in contact the observation based on k-means is
used. The system recognizes mice interaction when the quantity
of blobs in the image is less than the previously known quantity
of mice to be tracked. That combination reduces the running time,
shown in the Fig. 5, and maintain a good correct classification rate
(Fig. 6).

In Fig. 6, the graphic presents the result for image shots with
mice moving as a cluster. Tracking a cluster of mice, as illustrated
in the Fig. 7, is a difficult task, also for humans. For contact situa-
tions, the observation model based on connected component anal-
ysis does not achieve a good performance. However, the model
based on k-means and in the combination between the models
solve this problem, achieving better results. The model based on
k-means with 400 particles achieved a mean of 95% correct classi-
fication rate. In contrast to the first model, the model based on the
combination between k-means and connected components analy-
sis achieved a mean of 96% correct classification rate. Although
both techniques present similar correct classification rate, the
combination of k-means and connected components analysis out-
performed the k-means, once it obtained a faster runtime (see
Fig. 5).

Fig. 8 shows the tracking results for three mice in a sequence of
images where mice start moving separately, then they cluster to-
gether and afterwards they split again. For each situation the

Fig. 9. Regions used in the experiments with larvae.
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particles distribution and the ellipses representing the mice are /
-~

presented. It is worth noting that even when the mice are all clus-
tered together, the combination of particle filter and k-means, as
proposed in this article, obtained good tracking results.

5.2. Larvae tracking

The problem tackled in the second experiment is to track ten
larvae placed in a 25 ml liquid solution. The top view of the exper-
iment with the 12 regions, as in the experiments with mice, is
shown in Fig. 9. Each larva has been associated with a different par-
ticle filter, all sharing the same observation and dynamic model.
The same ground-truth comparison methodology used in the mice
experiment were used in this second experiment.

As in the first experiment, image shots were taken from a cam-
era placed over the animals container. Image shots where the

100

.
v ©
< o
l - 4 -
- r
¢ 0

Fig. 12. Example of larvae not in contact.
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Fig. 10. Number of particles number versus correct classification rate for larvae not in contact.
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larvae are in contact and in partial occlusion have been selected. captured using a webcam Logitech Quickcam Pro 4000. Later, the
These image shots, with a 720 x 480 pixels resolution, have been frames have been segmented using background subtraction. All
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Fig. 13. Example of larvae in contact.
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Fig. 14. Example of tracking results for 10 larvae and 1000 particles for each particle filter.
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the tests have been performed using a computer with a dual-core
processor, 1GB MB of memory RAM and an Linux operating system
with Kernel version 2.6.

The same parameters as in the first experiments were varied.
The filter was evaluated in 50 images in which some of the larvae
move as a cluster, in contact with others, and in more 50 images in
which all the larvae move separately, that is, with no contact or
occlusion.

The results are presented in Figs. 10 and 11. In Fig. 10, the cor-
rect classification rate over the number of particles, when larvae
are never in contact, is shown. As in the first experiment, the cor-
rect classification rate corresponds to the mean values over the
other free parameters. Both nonauto-adjustable observation mod-
els present classification rates above 95%, with just 100 particles.
Similar performance is achieved using the auto-adjustable model.
Fig. 12 shows an image frame when larvae are not in contact.

In Fig. 11, the graphic presents the correct classification results
for images where larvae are in contact. In this situation, the graphic
shows that an observation model based on simple connected com-
ponent analysis does not achieve a good performance. However,
both the k-means and the auto-adjustable observation model
provide better correct classification rates. The model based on
k-means, using 500 particles, achieves a mean of 85% correct
classification rate, whereas the auto-adjustable model reaches a
83% mean correct classification rate, a much better rate than the
70% achieved using connected component analysis (See Fig. 13).

Fig. 14 shows an example of the tracking results for ten larvae in
a sequence of 3 image frames where some larvae start moving sep-
arately and then they cluster together. For each situation the par-
ticles distribution and the ellipses representing the larvae
contours are presented. It is worth noting that, as with the mice
example, even when the larvae are all clustered together, the com-
bination of particle filter and k-means, as proposed in this article,
obtained good tracking results.

6. Conclusion and future work

This paper showed an implementation of the proposed auto-
adjustable observation model, that combines different observa-
tions models in a particle filter framework, applied to the tracking
of multiple mice and larvae. Experiments have shown that an
observation model based on the combination between k-means
and connected component analysis, dynamically chosen, can lead
to higher correct classification rates than a model based only on
connected components analysis and almost as high as the one
based on k-means, without a great penalty in processing time.
The use of k-means during the observation phase of the filter
showed to be important for partial occlusion robustness. However,
when mice move separately, the results are basically equal. The use
of standard k-means has the drawback that it cannot separate clus-
ters that are non-linearly separable in input space. However, the
typical mice clustering situations, as illustrated in Figs. 1 and 8,
are linearly separable. The problem of optimal locality, associated
with the standard k-means formulation can be handled using good
initial values. In the experiments discussed in this paper, the use of
previous estimated positions of the object and the auto-adjustable
observation Model, has proven to be a good choice.

The main contributions of this article are the use of a dynamical
combination of the k-means and the connected component analy-
sis in the observation model of a particle filter and the empirical
evaluation of this approach using two important real-world prob-
lems. Another contribution is the tracking evaluation procedure,
based on a standard test much used in pharmacological research.
For future research, it would be interesting to include information
related to the contour of the objects in the state model, and to use

variable velocity in the dynamic model, calculated using optical
flow techniques, for instance. It would also be interesting to ex-
pand the tests using a larger amount of images, with different
kinds of animals and environments. The use of a more sophisti-
cated cluster technique, in place of k-means, should also be
investigated.
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