
A New Strategy for Applying Grammatical

Inference to Image Classification Problems

Hemerson Pistori

INOVISAO Computer Vision Lab.

Dom Bosco Catholic University, UCDB

Campo Grande, MS, Brazil

pistori@ucdb.br

Andrew Calway and Peter Flach

Computer Science Dept.

University of Bristol

Bristol, UK

andrew@compsci.bristol.ac.uk,Peter.Flach@bristol.ac.uk

Abstract—This paper presents a new strategy to represent an
image as a string so that standard grammar induction techniques
can be used in computer vision problems. Two sets of experiments
using an artificial and a real dataset have been conducted in
order to explore the new strategy parameters and to have a first
glimpse on its comparative performance against some standard
machine learning techniques. The results are encouraging and the
proposal opens new paths of exploration for syntactical pattern
recognition.
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I. INTRODUCTION

Constructing a formal language representation from a finite

set of exemplar strings is a classical problem in computer

science. Usually, the language is an infinite set of strings

and the algorithms that induce, for instance, grammars and

automata, from the finite subset of strings, can be viewed

as machine learning algorithms. Grammar learning or gram-

matical inference is commonly used in fields like bioinfor-

matics [1] and machine translation [2] as the problems are

naturally related to string processing in these fields. The use

of techniques derived from the formal language disciplines for

visual pattern recognition is not new and was much explored in

the area called syntactical or structural pattern recognition [3].

Recently, the idea of image grammars and image parsers

regained attention with a series of works by Zhu at al [4], [5],

[6]. A main issue in exploring formal languages techniques

and grammar inference in computer vision is how to represent

the images. The proposals vary from a standard textual string

to strategies that try to explicitly preserve spatial information,

like matrix grammars, graph grammars [7] and attribute graph

grammars [5].

As the image representation strategy moves further away

from the standard textual string, in order to preserve spa-

tial information explicitly, it becomes more difficult to take

advantage of the advances in formal languages processing.

In this paper, a return to a pure string representation for

the image, exploring keypoints detectors and visual words,

is investigated as an alternative to simplify the re-use of

string processing algorithms. The main idea of the proposal

is to impose an order to the n keypoints detected using

any keypoint detector and produce a string of size n. The

alphabet for the string symbols is defined using k-means,

as in the Bag of Visual Words or simply Bag of Words

technique [8]. Experiments using a synthetic image dataset

were conducted in order to analyse the impact of the alphabet

size and the keypoints ordering strategy on the classification

performance. A comparison of the proposed technique against

K-Nearest Neighbourhood (KNN), Support Vector Machines

(SVM) and Decision Trees (C4.5) based machine learning

techniques using the 15-scenes benchmark described in [9] is

also reported. For these experiments, the grammar inference

algorithm K-Testable [10] and the keypoints detector Speed-

Up Robust Features (SURF) [11] have been used, but the

technique can be applied using any string grammar inference

and keypoints detector algorithms available.

In the next section a review on the related works is pre-

sented. Section III reviews some concepts used in this paper.

The proposed method is detailed in Section IV, followed

by the experimental setup description in Section V. Results

and analysis are presented in Section VI, followed by the

conclusions and future works in Section VII.

II. RELATED WORK

The first attempts to use linear string languages to describe

images can be traced back to the beginning of the sixties [12],

[13]. A formal descriptive mechanism , called Picture Descrip-

tion Language, PDL, has been presented in [14] and was aimed

to be a language of discourse about pictures both as an analysis

(computer vision) and as a generator (computer graphics) tool.

In PDL, the terminal symbols were called primitive patterns

or picture primitives, and their semantics were dependent on

the application. In general, picture primitive symbols should

be associated to image patches that are more conveniently

recognized as unit than in terms of their parts. Each primitive

has one and just one tail and one head that are used to connect

it to other primitives. This property ensured the linearity of

the language. An especial primitive was used to represent

the “blank spaces” that could happen among disconnected

pictorial elements in the same image. Our approach is similar

to PDL in the way that it also entails linear strings to describe

images but using a different strategy to define and combine

picture primitive symbols.



In order to overcome the string language limitation to ex-

press more naturally the two dimensional relations inherited in

image representation, several extensions to the standard gram-

mars have been proposed [15], the most populars being related

to the use of some category of arrays [16] or graphs [17],

[6] in place of strings. The substitution of strings by multi-

dimensional constructs introduces the important problem of

embedding, as unlike with strings, there is no unique obvious

way to select what and how parts of a graph can be changed

to generate the next graph in a parse derivation. Several

different strategies to represent the graphs, to restrict the

graph categories to be used and to define the embedding

transform have been proposed [18]. In [19] the use of pattern

grammars expressed using predicate logic is suggested to

improve accuracy in object detection. The proposed method

uses standard techniques to achieve a first rough estimation of

object parts and the predicate logic reasoning to improve the

estimation. As a by-product, the system can produce proofs

explaining why the object could or could not be identified.

The And-Or-Graph representation proposed in [6] is based

on a digraph with edges representing different kinds of rela-

tions among scenes, objects and image patches associated with

the graph vertices. Image primitives in this approach can be

of three kinds: (1) textons (blobs, bars, junctions, etc) , (2)

texture areas and (3) flat areas. In [20] a mechanism called

visual grammar is applied to the problem of scene recognition.

Most of the proposal is related to the application of statistical

techniques to derive region features and spatial relations

from many different image pixel attributes. The grammatical

component of the proposal seems to be related only to the

use of a hierarchical structure to represent the image through

attributed relational graphs (a graph with labelled vertices and

edges).

Wang et al. [21] propose an extension of the Stochastic

Context Free Grammars (SCFG), used in string processing, to

multidimensional domains by introducing the spatial random

trees (SRTs). An SRT is a stochastic hidden tree whose

leafs are associated with rectangular areas of the image. The

rectangles (tiles) can be of different sizes an form a complete

tiling of the image.

III. BACKGROUND

In this section the major concepts on which the investigation

has been based are reviewed in order to keep the paper as self-

contained as possible.

A. Speed-Up Robust Features - SURF

The Speed-Up Robust Features or SURF algorithm is a

strategy to both detect and describe interest points from an

image. Interest points are detected using a very basic but

fast approximation of the Hessian matrix (Gaussian Second

Order Partial Derivatives), based on box filters. Implicit image

pyramids are used to search for interest points in different

scales and points with small Hessian matrix determinants are

suppressed using a non-maximum suppression strategy in a

Fig. 1. SURF interest points extracted from 6 images of the 15 scenes dataset
described in [9]

3× 3× 3 neighbourhood. Figure 1 shows several examples of

interest points detected (circled) in some scene images.

For each interest point detected, SURF generates a feature

vector containing 64 values. SURF descriptors are based on

similar properties as the Scale-Invariant Feature Transform

(SIFT) technique [22] but even more simplified. First, the

overall orientation (regarding gradient information) of a small

circular region around the interest point is calculated. A rectan-

gular region aligned using this orientation is construct around

the interest point. This rectangular region is split regularly into

4× 4 square sub-regions and sampled Haar wavelet responses

in vertical and horizontal direction (regarding the rectangle

orientation), weighted with a Gaussian centred at the keypoint,

are extracted for each sub-region. These wavelet responses and

their absolute values are summed up for each sub-region. And

so, for each of the 16 sub-regions, 4 values are calculated,

resulting in the 64d feature vector. Integral images [23] are

used whenever possible in SURF algorithm in order to speed-

up filters response calculations.

B. Bag of Words - BOW

Both SIFT and SURF algorithms describe an image using

a variable size set of interest points, with their respective

keypoint descriptors (a 64 valued feature vector in the case of

SURF). In order to use a standard machine learning that needs

a fixed size vector as input, the Bag of Words (BOW) strategy

can be used. In BOW, the interest points extracted from a

set of training images are clustered, using k-means and the



resulting k cluster centers, also called keypoints (in analogy

with the keywords in string processing) form a dictionary of

size k. Each interest point can now be represented by the

dictionary entry corresponding to its nearest cluster center

(nearest keypoint). A k-bins histogram of keypoints is used to

represent an image. Each bin of this histogram is also called a

visual word. The size of the dictionary is a key feature in this

strategy an it is application dependent. The strategy can be

straightforwardly adapted to any interest point detector, but

was initially formulated using SIFT (SURF was introduced

after BOW).

C. K-Testable

A K-Testable language is a subclass of the regular lan-

guages for which parsing of any string can be done using

a fixed memory of size k. The K-Testable grammar inference

algorithm is able to infer K-Testable languages in polynomial

time. In essence, this algorithm finds prefixes, substrings and

suffixes that occur in the training data [24]. In this paper, the

implementation of K-Testable available with GI Toolbox for

Matlab has been used [10]

IV. PROPOSED APPROACH

The approach proposed in this paper consists of a supervised

learning strategy that combines interest points detection and

grammar inference. At first, a dictionary is constructed, from

training images, using the same strategy used in BOW. This

dictionary is mapped to an alphabet using one symbol (E.g.:

ASCII character) for each visual word (keypoint cluster cen-

ters) of the dictionary. For each image, both in training and in

testing phase, keypoints are detected and mapped to a visual

word. The keypoints are traversed using a predefined order

and a string is created by concatenating the symbols (char-

acters) that correspond to each visual word. The keypoints

can be traversed in several different ways. In the experiments

described in this paper the following orders were tested: (1) the

order returned by the SURF implementation in OpenCV which

traverses the image several times, in reading order, for each

different scale (image pyramid) used by SURF and described

in [11]; (2) a random order; (3) a radial order that starts

from the keypoints central point and proceeds by choosing

the nearest point using the Euclidean distance from the center;

(4) a reading order that traverses the image from left to right

and from top to bottom; (5) an approximate reading order that

before the traversal, quantize or smooth the keypoints position

using a quantization parameter.

During training (learning), for each class, a grammar (or an

alternative representation for a grammar, like an automaton) is

induced from the set of strings corresponding to the training

images of this class. In the case of K-Testable, which is used in

the experiments of this paper, a definite finite state automaton

(DFA) is used to represent the grammar, and so, for each class,

an automaton is induced. As some symbols from the dictionary

may not be available in certain set of images used to train

a class, the DFA may not have a transition related to that

symbol. In this case, during execution of the automaton, the

Fig. 2. Illustration of a string extracted from an image using the proposed
approach

symbol is ignored and the automaton proceeds reading the next

symbols without changing the current state. An error recovery

strategy is used so that the automaton will always read all the

symbols of the input string. The number of error corrections

used during the string processing is used for classification

during testing.

During testing, for each image a string is generated using the

same strategy as during training. This string is parsed by each

class corresponding parser and is assigned to the class whose

parser produces the smallest error counter when processing the

string. In the case of a tie, one class is returned arbitrarily. In

K-Testable, this parsing corresponds to running the automaton

on the string, with error recovery. Obviously, other grammar

induction strategies using different kinds of representation

(E.g: push-down automata, context free grammars, etc) could

be used in place of K-Testable.

Figure 2 illustrates the derivation of a string from an image

using the proposed approach. In this image, 10 keypoints have

been detected and a dictionary Σ = {A,B,C,D} of size 4

was used. The resulting string, using the reading order would

be AACBBBCADB.

V. EXPERIMENTAL SETUP

Two experiments have been performed. The first used a

synthetic set of images involving spatial relations between

triangles and squares. The dataset is composed of 6 classes,

each containing 8 exemplar images. The 48 images from this

dataset are shown in Figure 3. The proposed approach has

been experimented using 153 different configurations. The

dictionary size has been varied from 2 to 50, with an increment

of 3. Seven different keypoints orderings have been tested:

(1) SURF order (PYRAMID); (2) Random Order (RAND);

(3) Radial Order (RADIAL), (4) Reading Order (READ) and

Quantized Reading Order using the quantization factor (5) 5

x 5 (READ 5x5), (6) 10 x 10 (READ 10x10) and (7) 20 x

20 (READ 20x20). A quantization factor of N x N means

that both the X and the Y coordinates of each keypoint are

integer divided by N before applying the reading order. A 75%

random split sampling strategy, with 8 repetitions, has being



Fig. 3. The 48 images from the geom dataset. Each row corresponds to one of the 6 classes

used for choosing training and testing sets.

In the second experiment, the 15 scenes dataset [9] has

been used1. Some samples of this dataset are presented in

Figure 4. It comprises a set of 4485 gray-scale images from

15 different categories of scenes classified by humans. Table I

summarizes the categories represented in the 15 scenes dataset.

The average image size is 300× 250.
The method has been compared to Support Vector Machines

using the WEKA 3.6.1 SMO implementation with the default

parameters, to KNN with K=10 and to C4.5, also from WEKA.

The Bag of Words approach, with a dictionary of size 50

and SURF features, has been adopted to generate the input

vector for these three algorithms. The K parameter for KNN

1The 15 scenes dataset has been downloaded in March, 2012, from www−

cvr.ai.uiuc.edu/ponce grp/data/

TABLE I
NUMBER OF TOTAL SAMPLES AVAILABLE FOR EACH SCENE CATEGORY

Class Samples Class Samples

bedroom 216 inside city 308

suburb 241 mountain 374

industrial 311 open country 410

kitchen 210 street 292

living room 289 tall building 356

coast 360 office 215

forest 328 store 315

highway 260

has been chosen experimentally from the best F-Measure when

K varies from 1 to 40 (using the same dataset but with another

randomly chosen training and test partition). The F-Measure

score for each classifier applied to each different class has been



TABLE II
F-MEASURES USING K-TESTABLE GRAMMAR INDUCTION STRATEGY AND DIFFERENT DICTIONARY SIZES (LINES) AND KEYPOINTS ORDERS (COLUMNS)

Dic. Size PYRAMID RAND RADIAL READ READ 5x5 READ 10x10 READ 20x20

2 20.00% 13.00% 25.00% 22.00% 21.00% 23.00% 48.00%

5 94.00% 71.00% 67.00% 91.00% 77.00% 80.00% 83.00%

8 89.00% 69.00% 70.00% 90.00% 92.00% 94.00% 88.00%

11 96.00% 78.00% 80.00% 89.00% 94.00% 94.00% 92.00%

14 98.00% 85.00% 76.00% 88.00% 83.00% 91.00% 94.00%

17 96.00% 86.00% 79.00% 89.00% 79.00% 95.00% 91.00%

20 91.00% 84.00% 82.00% 87.00% 95.00% 98.00% 92.00%

23 93.00% 91.00% 83.00% 89.00% 92.00% 89.00% 95.00%

26 92.00% 85.00% 77.00% 79.00% 94.00% 90.00% 96.00%

29 94.00% 86.00% 78.00% 82.00% 90.00% 95.00% 92.00%

32 96.00% 84.00% 76.00% 83.00% 91.00% 93.00% 81.00%

35 95.00% 80.00% 83.00% 85.00% 92.00% 93.00% 86.00%

38 96.00% 78.00% 82.00% 86.00% 92.00% 88.00% 80.00%

41 95.00% 78.00% 83.00% 81.00% 94.00% 92.00% 89.00%

44 92.00% 83.00% 77.00% 89.00% 91.00% 92.00% 92.00%

47 99.00% 83.00% 76.00% 80.00% 86.00% 89.00% 88.00%

50 96.00% 89.00% 73.00% 89.00% 93.00% 87.00% 84.00%

(a) (b)

(c) (d)

Fig. 4. Four samples from the 15 scenes dataset: (a) bedroom, (b) forest,
(c) street and (d) living room

chosen as the metric for a Friedman test [25]. The dataset

has been randomly partitioned using, in each class, 70% of

the samples for training and 30% for testing. The dictionary

size of 50 has been used because it is the maximum size

that the current implementation of the grammatical inference

algorithm can handle, as basically only lower and upper case

letters can be used as the grammar terminal symbols, and

because previous experiments with the other three approaches

indicated that they perform better with larger dictionary sizes.

The keypoints order for the proposed approach, in the second

experiment, was chosen based on the performance during the

first experiment: SURF order (PYRAMID).

VI. RESULTS AND DISCUSSION

Table II presents the results of the first experiment. The

highest F-Measure, of 99%, has been achieved using 47

symbols and the SURF order (PYRAMID). The SURF order

implicitly captures scale information, which may explain this

superior performance. The random order was consistently

inferior to all the other orders, except for the non-quantized

reading order (READ), indicating that the grammar inference

approach is being able to extract information from the way

keypoints are organized in the image. The quantized reading

order mitigates small noisy variations in the keypoints posi-

tions that should otherwise appear aligned in the image. In

Figure 2, for instance, more keypoints would be aligned to

the bridge if a proper spatial quantization factor was used.

This effect may justify the inferior performance of the pure

reading order in this experiment.

TABLE III
F-MEASURES FOR PROPOSED APPROACH, KNN WITH K=15, SVM AND

C4.5. HIGHEST VALUES FOR EACH CLASS ARE IN BOLD

Class Proposed KNN SVM C4.5

bedroom 0.00% 7.80% 6.70% 11.90%

coast 14.00% 46.40% 50.40% 38.10%

forest 64.00% 51.40% 55.70% 57.70%

highway 0.00% 15.00% 25.70% 25.00%

industrial 16.00% 15.00% 12.30% 15.80%

insidecity 22.00% 14.90% 11.50% 11.80%

kitchen 0.00% 12.50% 6.70% 7.40%

livingroom 2.00% 13.10% 10.80% 15.50%

mountain 17.00% 11.40% 16.10% 11.60%

office 0.00% 5.10% 19.10% 9.30%

opencountry 2.00% 11.30% 21.50% 24.70%

store 22.00% 10.70% 16.50% 17.90%

street 15.00% 8.80% 13.00% 15.80%

suburb 16.00% 11.30% 9.20% 20.80%

tallbuilding 25.00% 6.90% 14.10% 22.70%

Mean 14.33% 16.11% 19.29% 20.40%

Table III presents the F-Measures achieved in the second

experiment for each tested approach (columns) and scene

categories (lines), with the last line showing the mean F-



Measure among all categories. The p-value using Friedman

test on the data presented in Table III is 0.1351 and so we

cannot reject the null hypothesis that the algorithms present the

same F-Measure performance even in a 0.05 confidence level.

In 6 out of the 15 classes, the proposed approach achieved the

highest F-measure, the largest number of highest scores per

class among all the algorithms tested. C4.5 came in second,

with highest scores in 4 classes.

VII. CONCLUSIONS AND FUTURE WORK

A return to the simple approach of converting the image

into a string and use string processing algorithms in Computer

Vision has been investigated in face of the existence of

new strategies for image feature extraction (like SURF and

SIFT) and new string processing algorithms that have not

been explored when these ideas have been first tested 30 or

40 years ago. The proposed approach compares well with

some available algorithms for scene classification problems

using smaller dictionary size but the main contribution of this

paper is the proposal of a novel method to convert images

to strings, which can pave the way for new improvements in

the syntactic pattern recognition area when applied to image

processing. One main limitation of the BOW method is that it

loses important spatial and structural information (the BOW

histogram only counts the occurrence of some prototypical

keypoints). The string created using the proposed approach

preserves, implicitly, some spatial and structural information

that can be retrieved using an appropriate grammar inference

algorithm (we have only tested the system with a regular

language induced, so far).

Suggestions for future research include the use of more

powerful grammar inducing algorithms (e.g.:non regular lan-

guage induction algorithms) and error recovery strategies.

Differently from natural language induction problems, finding

negative examples can be easier in scene recognition, so it

is worth trying grammar induction algorithms that can take

advantage of the availability of negative examples (K-Testable

explores only positive examples). Using the parser error re-

covery strategy to devise a way to compare strings derived

from images is something that needs further exploration and

can be an alternative to the more common metrics used in

computer vision. Stochastic grammars are also an alternative

to be tried as well as larger dictionaries and different ways

to choose the best grammar. Optimizations and experiments

regarding execution time performance are also advised.
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