
Adaptive Finite State Automata and Genetic Algorithms:
Merging Individual Adaptation and Population Evolution

Hemerson Pistori, Priscila S. Martins, Amaury A. de Castro Jr.
Universidade Católica Dom Bosco, Centro de Ciências Exatas e Tecnológicas,

E-mail: {pistori,martins,amaury}@ec.ucdb.br

Abstract

This paper presents adaptive finite state automata as an al-
ternative formalism to model individuals in a genetic algorithm
environment. Adaptive finite automata, which are basically
finite state automata that can change their internal structures
during operation, have proven to be an attractive way to rep-
resent simple learning strategies. We argue that the merging
of adaptive finite state automata and GA results in an elegant
and appropriate environment to explore the impact of individ-
ual adaptation, during lifetime, on population evolution.

1 Introduction

Most of the early work on genetic algorithms were
based on the simplifying assumption that individuals do
not change during lifetime. In contrast to this “rigid in-
dividuals” approach, some important trends on compu-
tational evolution, tackling the challenge of incorporat-
ing some kind of plasticity, into individuals modeling,
started to emerge, in the last decade. Baldwinian [1]
and Lamarckian [2] Evolution, are two of the major ap-
proaches, in which, individuals phenotype is not a di-
rect map from its genotype, but instead, the phenotype
presents some flexibility in responding to the environ-
ment input.

Plasticity refers to the flexibility, or capacity for
change [3], of a subject, and includes both reasonably
simple traits, like the malleability of an amoeba cell
membrane, and complex phenomena, like human learn-
able behaviors. It has been pointed out that individual
plasticity is not always a beneficial trait. Turney, for in-
stance, presented ten dimensions of trade-offs related to
the balance of phenotype rigidity and plasticity, like en-
ergy consumption, length of learning period and smooth-
ness of the fitness landscape [4].

Some simulation experiments involving plastic and
learning individuals have been proposed. Most of these
works are based on the use of artificial neural-networks
with backpropagation [5] or some simpler hill-climbing
strategy [2], to model the ability of an individual to per-
form a local search on the fitness space, before a new
population is produced by some standard genetic algo-

rithm approach.
The concept of a plastic automaton, that can change

its initial structure, during execution, have been initially
proposed by Neto to address some problems on compiler
construction design and implementation [6]. This for-
mal device was named Adaptive Automaton. Indepen-
dently, Shutt and Rubstein introduced in [7], a similar
device, called Self-Modifying Automata [7]. More re-
cently, Klein and Kutrib presented the Self-Assembling
Automata [8], which share the same basic concepts cre-
ated by Neto, Shutt and Rubstein, but with a new formal-
ization. This paper presents the Adaptive Finite State
Automata, or A -FSA , as an alternative way to repre-
sent plastic individuals in a GA population. The A -FSA
formalism is heavily based on Adaptive Automata, but
without some features that, despite being important in
compiler construction design and some other application
areas, would just add superflous complexity to the prob-
lem of represeting a GA genotype as a plastic automaton.

The three main reasons why A -FSA is an interesting
formalism to represent plastic individuals are: (1) plas-
ticity is an inherent, but easily disabled, characteristic
of A -FSA (2) tradicional automata, like finite state [9],
pushdown [10] and automata with multiplicities [11], are
already being explored as individual modelling tool, in
the context of “standard” genetic algorithms; (3) Adap-
tive finite state automata are related to two well stab-
lished fields: formal language theory (FLT) and gram-
matical inference (GI) [12, 13]. The integration of A -
FSA and GA would bring these three fields (FLT, GI and
GA) closer, facilitating information exchange, and tools
reutilization.

The next section presents adaptive finite state au-
tomata and a graphical notation for their representa-
tion. Section 3 discuss the integration of Baldwinian
and Lamarckian computational evolution with adaptive
automata theory. Finally, conclusion and sugestions for
future work are presented.

2 Adaptive Finite State Automata

An A -FSA is a kind of finite state automaton that
can change its transition relation during input reading.
It can be seen as a simplified version of an adaptive
automaton [6] and as a generalized self-assembling au-
tomata [8]. Each transition of an A -FSA , besides op-
erating as in a conventional FSA, can be attached to an
adaptive function, which is executed just before the tran-
sition, removing or inserting new elements to the au-
tomaton’s transition set.

Formally, an A -FSA is a 10-uple M =
〈Q,Σ, q0, F, δ, κ,Γ,Ψ,Φ,∆〉. The first five elements
define the subjacent mechanism, where:

Q is the state set.

Σ is the input alphabet, finite and non-empty.

q0 ∈ Q is the initial state of the automaton.

F ⊆ Q is the final state set.

δ ⊆ Q × {Σ ∪ {ε}} × Q × {κ ∪ {ε}} × 2Γ7→{Q∪Σ} is
the non-deterministic transition relation.

The transition relation differs from the usual one by
two new elements: an adaptive function label, taken
from κ, and a set P ∈ 2Γ7→{Q∪Σ}, of parameter assign-
ments, where Γ 7→ {Q ∪ Σ} is a partial function that
maps formal parameters to states or input symbols. The
adaptive function label may also be an epsilon symbol
(ε), indicating that the transition is a regular one. The
other five elements of M define the adaptive mechanism,
where:

κ is the set of adaptive functions labels.

Γ is a set of formal parameters and variables.

Ψ is a set of generators.

Φ : {Γ ∪ Ψ} 7→ κ is a partial function, mapping formal
parameters, variables and generators, to adaptive
function labels.

∆ ⊆ κ × {?,+,−} × {Q ∪ Γ ∪ Ψ} × {Σ ∪ {ε} ∪ Γ}
×{Q∪Γ ∪Ψ}×{κ∪{ε}∪Γ}×2Γ7→{Q∪Σ ∪Γ∪Ψ}

is the set of adaptive actions.

The first element of each adaptive action just groups
adaptive actions into adaptive functions. The second el-
ement defines the type of the adaptive action, which can
be a query (?), a remove (−) or an insert action (+).
The remaining elements represent the transitions to be
queried, removed or inserted. These elements can be

A (?p1, ?p2)

Before After

?p1 ?x ?y
?p2 ?p2 -

-

-
?p1 ?y

?p2

ε

Fig. 1. Adaptive function Graphical Representation

q0 q1 q2 q3

a a ε A (q0, a)

q0 q2 q3

ε ε A (q0, a)

a

Fig. 2. Automaton structure before and after reading aa

replaced by a formal parameter, a variable or a gener-
ator. Formal parameters are mapped to the values de-
fined in δ, during the adaptive function execution. Vari-
ables are used to indicate general transition patterns and
generators indicate a state that is to be used for the first
time inside the dynamically changing δ function. A de-
tailed description of an A -FSA is out of the scope of
this paper, mainly for space restriction, but the follow-
ing graphical representation proposal, can express, more
intuitively, the operation of an adaptive function.

In the graphical representation, adaptive functions are
illustrated by two prototypical automata (represented by
the usual graphical notation, with circles and arrows),
separated by a triple arrow. The triple arrow direction in-
dicates an automaton sub-structure before and after the
adaptive function execution. Variables and formal pa-
rameters are marked with the prefix “?”, while gener-
ators are prefixed by “*”. The adaptive function label
and its formal parameters appear above the graphics, us-
ing standard notation for functions: the function label
followed by a comma delimited, bracket enclosed, se-
quence of parameters.

Figure 1 shows a 2-parameter adaptive function that
removes any two adjacent transitions, departing from
state ?p1, that read the same input symbol, ?p2; and in-
serts a loop, on state ?p1, reading ?p2. An empty tran-
sition is also created, from ?p1 to the state previously
reached by the adjacent transitions. This adaptive func-
tion, if properly used, generalizes the language accept
by the automaton, creating a loop, after reading two con-

q0

#

b A (b, q0)A (a, q0) a

(a)

A (?p1, ?p2)

?p2

A (?p1, ?p2) ?p1

-

-

-
?p2

q0

∗n

A (a, ∗n) a

A (b, ∗n) b

#

?p1

(b)

Fig. 3. Adaptive FSA for building Prefix-Tree Acceptor

(a) Subjacent Mechanism (b) Adaptive Mechanism

secutive symbols. Figure 2 illustrates how a subjacent
mechanism should look before and after the execution
of this adaptive function.

Finally, its worth noting that an A -FSA can be easily
specialized to a self-assembling finite automata of degree
k [8], just by: (1) restricting to k, the number of adap-
tive function parameters, (2) not accepting input symbols
(just states) to be passed as parameters, (3) not allowing
variables and (4) not allowing transitions to be removed.
A formal proof of this result, which will imply that the
class of languages accepted by self-assembling finite au-
tomata, is a subset of the one accepted by an A -FSA , is
under development.

2.1 An A -FSA that builds a prefix-tree acceptor

Many grammar induction algorithms start from build-
ing a special kind of finite state automaton, called prefix-
tree acceptor, or simply, PTA [12]. Algorithms to build
PTAs, from a set of positive strings, are straightforward.
However, in the following example, both the PTA, and
the algorithm that builds a PTA, from sample strings,
will be modeled as an A -FSA .

The automaton’s subjacent layer, with alphabet Σ =
{a, b,#}, has one state, and is shown in figure 3.(a).
The number sign, #, is just a string delimiter. Transi-
tions (q0, a, q0) and (q0, b, q0) are both associated with
the 2-parameters adaptive function, A , presented in fig-
ure 3.(b). The adaptive function just breaks the loop (pa-
rameterized by ?p1 and ?p2), creating a new prefix-tree

q0

q1

a

q0

q1

q2

a

a

q0

q1

q2

q3

a

a

b
q0

q1

q2

q3

q4

a

a

b a

Fig. 4. Automaton structure as it reads aa#aba

edge, and two new loops, similar to the initial ones, that
will allow the prefix-tree to continue growing, if neces-
sary. A string delimiter transition is also inserted to lead
the automaton to its initial state whenever a number sign
is read. Figure 4 illustrates the automaton’s plasticity, as
it reads the sample input aa#aba. Loops and delimiter
transitions are omitted in the sake of clarity.

This automaton can be formalized as an A -FSA
M = 〈Q,Σ, q0, F, δ, κ,Γ,Ψ,Φ,∆〉, where the sub-
jacent mechanism has Q = {q0}, Σ = {a, b,#},
q0 = q0, F = {q0}, δ = {(q0, a, q0,A (a, q0)),
(q0, b, q0,A (b, q0)),(q0,#, q0, ε)} and the adaptive
layer, containing just one adaptive function, A , has
κ = {A }, Γ = {p1, p2}, Ψ = {n}, Φ =
{(p1,A), (p2,A), (n,A)}. The ∆ relation, repre-
sented using a notation that emphasizes the adaptive ac-
tion type (shown outside the brackets) and the associa-
tion of adaptive function labels and parameters, is:

A (?p1, ?p2) = { ?(?p2, ?p1, ?p2,A (?p1, ?p2)),
−(?p2, ?p1, ?p2,A (?p1, ?p2)),
+(?p2, ?p1, ∗n, ε),
+(∗n,#, q0, ε),
+(∗n, a, ∗n,A (a, ∗n)),
+(∗n, b, ∗n,A (b, ∗n))}

3 Baldwinian and Lamarckian Evolution with Adap-
tive Finite State Automata

Genetic Algorithms are very efficient at exploring the
entire search space; however, they are relatively poor
at finding the precise local optimal solution in the re-
gion at which the algorithm converges. For make things
better, there are hybrid algorithms which are the com-
bination of improvement procedures, usually working
as evaluation functions, and genetic algorithms. In or-

der to improve the algorithms performances, local im-
provement procedures have been incorporated into GAs,
through what could be called “learning” or “individual
plasticity”. There are two basic strategies in using hy-
brid GAs: Lamarckian and Baldwinian evolution. The
Baldwin Effect, as utilized in genetic algorithms, was
first investigated by Hinton and Nolan [14] by allow-
ing an individual’s fitness (phenotype) to be determined
based on learning. Like in natural evolution, the result
of the improvement does not change the genetic struc-
ture (genotype) of the individual. Although Lamarckian
evolution has been universally rejected as a viable theory
of genetic evolution in nature, using ideas inspired on
it, in genetic algorithms, can improve their convergence
speed [2]. In Lamarckian computational evolution, the
genetic structure of an individual can be changed to re-
flect the results of learning.

In a GA environment where genotype are represented
as an A -FSA , the Baldwin effect could be explored by
the appropriate utilization of adaptive functions to model
plasticity or learning. The plasticity level could be con-
troled by designing, or admitting the evolution, of differ-
ent adaptive functions. A kind of “Lamarckian effect”
could also be easily acchieved by retaining the struc-
tural changes suffered by the automaton, between gen-
erations.

4 Conclusion
Adaptive finite state automata have been described

and an example illustrating their inherent ability to
model plasticity, in a formal language and automata the-
ory framework, has been presented. Using adaptive fi-
nite state automata to model individuals in GA opens a
new path for investigations on the interaction of individ-
ual plasticity and evolution, which is an important topic
in current computational evolution research. It may also
strengths the links between grammar inference and com-
putational evolution areas, providing a new environment
for theory and results exchange. Some suggestions for
future work include the integration of AdapTools 1, an
environment for adaptive automata development, with
some GA computational library. In-depth studies on
genotype representation, performance and limits of hy-
brid GA-A -FSA algorithms should also be conducted in
the near future.

References
[1] Jones, M., Konstam, A.: The use of genetic al-

gorithms and neural networks to investigate the
Baldwin effect. In: Proceedings of the 1999 ACM
symposium on Applied computing. (1999) 275–
279

1Freely available at http://www.ucdbnet.com.br/adaptools/

[2] Wellock, C., Ross, B.J.: An examination of
Lamarckian genetic algorithms. In Goodman, E.D.,
ed.: 2001 Genetic and Evolutionary Computation
Conference Late Breaking Papers, San Francisco,
California, USA (2001) 474–481

[3] Belew, R., Mitchell, M.: Adaptive Individuals
in Evolving Populations: Models and Algorithms
- SFI Studies in the Sciences of Complexity -
Vol.XXIII. Addison Wesley (1996)

[4] Turney, P.: Myths and legends of the Baldwin ef-
fect. In: Proceedings of the ICML-96 - 13th Inter-
national Conference on Machine Learning. (1996)

[5] Nolfi, N.: How learning and evolution interact:
The case of a learning task which differs from the
evolutionary task. Adaptive Bahavior 7 (1999)
231–236

[6] Neto, J.J.: Adaptive automata for context-sensitive
languages. SIGPLAN NOTICES 29 (1994) 115–
124

[7] Rubinstein, R., Shutt, J.N.: Self-modifying finite
automata. In: Proceeding of the 13th IFIP World
Computer Congress, Amsterdam: North-Holland
(1994) 493–498

[8] Klein, A., Kutrib, M.: Self-assembling finite au-
tomata. Technical report, Institut fr Informatik,
Giessen, Germany (2002)

[9] Belz, A., Eskikaya, B.: A genetic algorithm for
finite state automata induction with an application
to phonotactics. In: ESSLLI-98 Workshop on Au-
tomated Acquisition of Syntax and Parsing. (1998)
9–17

[10] Lankhorst, M.M.: A genetic algorithm for the in-
duction of nondeterministic pushdown automata.
In: Computing Science Report CS-R 9502, Uni-
versity of Groningen. (1995)

[11] Bertelle, C., Flouret, M., Jay, V., Olivier, D., Ponty,
J.: Genetic algorithms on automata with multiplic-
ities for adaptive agent behaviour in emergenet or-
ganizations. In: Proc.of SCI’2001. (2001) 22–25

[12] Cicchello, O., Kremer, S.C.: Inducing grammars
from sparse data sets: A survey of algorithms and
results. Journal of Machine Learning Research 4
(2003) 603–632

[13] Higuera, C.D.L.: Current trends in grammatical in-
ference. Lecture Notes in Computer Science 1876
(2001) 28–30

[14] Hinton, G., Nolan, S.: How learning can guide
evolution. Complex Systems 1 (1987) 495–502

