
 

Abstract — In this paper, we introduce a practical way to 

implement an efficient error-recovery scheme intended to handle 

incorrect input received by devices based on finite-state and 

structured pushdown automata. We start proposing an exact 

recovery scheme for single errors in deterministic finite-state 

devices. Then, we extend this approach to perform local recovery in 

the individual sub-machines of structured pushdown automata, and 

we complement the proposed single error-recovery scheme by 

considering non-deterministic devices and interactions among sub-

machines. Finally, we add a panic-mode scheme to the proposed 

method in order to take into account even multiple-error inputs. 

The chosen adaptive approach used in this strategy leaves 

untouched the underlying original automaton until an error is 

detected in its input stream. At this moment, an adaptive action is 

taken that adequately extends the automaton in order to perform 

the needed recovery in response to the detected error. Afterwards, 

the transitions included in the extension are executed according to 

the contents of the input stream, and when the underlying 

automaton is reached anyway, the extension is discarded, restoring 

the automaton to its original shape. 
 

Keywords — Structured Pushdown Automata, Adaptive 

Automata, Error Recovery, Compiler Construction. 

I.  INTRODUCTION 

anguage acceptors are expected to recognize symbol 

sequences belonging to the language they define. In 

practice, strings given as input to language acceptors often 

include misspellings and grammatical errors, and acceptors 

must reject them in this case. When used within a language 

processor, an acceptor should not simply reject the string, but 

bypass the error in order to proceed searching for further 

errors in its input. 

In general, error-recovery is a complex subject, even when 

focusing low-complexity devices such as finite-state automata 

[1, 2, 3, 4, 5, 6, 9, 10, 11]. Two adjacent errors are called 

simple when they are sufficiently far apart that their effects in 

the behavior of the automaton are not superposed, otherwise 

they are said to be multiple. By observing practical programs, 

one may remark that simple errors are significantly more likely 

to occur than multiple ones, and that for most practical 

situations no complex methods are needed for handling them. 

Nevertheless, multiple errors do occur, and by handling them 
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as exceptions, it is possible to concentrate efforts in recovering 

simple errors. 

The presence of an error in the input text is detected 

whenever the acceptor cannot perform any valid transition in 

response to some input symbol. Symptoms of the presence of 

an error seldom occur in its neighborhood, leading the 

acceptor to mistakenly perform a sequence of transitions 

before rejecting the input string. Although being inadequate 

for the particular input string being handled, note that those 

transitions would be perfectly valid for other correct input 

sentences. Such unavoidable imprecision usually make 

automatic error-repair procedures far worse than a manual 

correction performed by the text’s author. Therefore, instead 

of viewing error recovery as an approach to fix the input text 

errors, we will use it for re-synchronizing the acceptor with its 

wrong input string, and proceed searching for further errors. 

An adaptive automaton is an adaptive rule-driven device 

whose subjacent mechanism is a structured pushdown 

automaton. This formalism preserves intact most part of the 

clean syntax of structured pushdown automata, allowing a very 

intuitive view for the resulting Turing-powerful formalism as 

an automata with a dynamically changeable set of transitions. 

Such modifications are expressed through a very simple 

language where queries, deletions and insertions of transitions 

are specified by adaptive functions to be executed just before 

or after the execution of some transition. The self-modification 

required to model an error-recovery behavior can be elegantly 

captured by adaptive automata. The efficiency of such method 

is also discussed and illustrated in this work, through the 

analysis of an implemented scheme of adaptive error-recovery. 

The next section provides some notational revision for 

structured pushdown automata and adaptive automata. 

Afterwards, a classical error-recovery mechanism is presented. 

Section 7 presents in details our adaptive error-recovery 

approach, describing also some implemented examples. Last 

section gives some conclusions and future work proposals. 

II.  NOTATION  

A.  Structured Pushdown Automata Revisited 

A structured pushdown automaton (SPA) may be viewed as 

a set of finite state machines with special transitions for 

passing the execution control back and forth among machines. 

Formally, a structured pushdown automaton is a tuple M = (S, 

Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
) where: 

 S is a finite non-empty set of sub-machines. 

 Q is a finite non-empty set of states. 
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 µ: Q → S is a function. The inverse of µ, µ', induces a 

partition on set Q, with each part corresponding to the set 

of states of each sub-machine. Given a sub-machine s ∈ S, 

µ' (s) ⊆ Q is the set of states of s. 

 Σ is a finite non-empty input alphabet. 

 Γ is a finite set that is called the stack alphabet. 

 Q0 ⊆ Q is a set of initial states where, for each s ∈ S, | µ' 

(s) ∩ Q0 | = 1 (Each sub-machine has one, an only one, 

initial state). 

 F is a set of final states, which also corresponds to sub-

machine return transition.  

 δ
i
 is a relation over µ' (s) × Σ ∪ {ϵ} × µ' (s), where s ∈ S. 

Each element of this relation is called an internal 

transition. 

 δ
e
 is a relation over µ' (s) × S × µ' (s). Each element (q, m, 

q') ∈ δ
e
 is denominated an external transition or a sub-

machine call, and can be interpreted as a sub-machine call 

from state q to the sub-machine m pushing the state q' 

onto a pushdown store. 

Configurations in SPA are triples (q, x, z) where q ∈ Q is the 

current state, x ∈ Σ∗ is the part of input string yet to be read 

and z ∈ Q∗ is the content of the pushdown store, holding a 

sequence of sub-machine return addresses. When δ
e
 = Ø and 

|S| = 1 the SPA specializes to an ϵ-FSA, operating as such (the 

third element is not used). Otherwise, the step relation, ˫, 

which determines the machine operation, is extended to 

comprise the sub-machine call and return dynamics. Formally, 

given a SPA M = (S, Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
), q, q' ∈ Q, σ ∈ Σ 

∪ {ϵ}, x ∈ Σ∗, y, y' ∈ Q∗ we have (q, σx, y) ˫M (q', x, y') if and 

only if one of these three conditions apply: 

1. (q, σ, q') ∈ δ
i
, y = y' and µ(q) = µ(q'). [Internal transition] 

2. (q, s, p) ∈ δ
e
, q' ∈ Q0 ∩ µ' (s), y' = py, µ(q) = µ(p) and σ = ϵ. 

[Sub-machine call] 

3. q ∈ F, y = q' y' and σ = ϵ. [Sub-machine return] 

B.  Adaptive Automata Revisited 

An adaptive automaton is an adaptive device AD = (SM, AM) 

whose subjacent mechanism is a structured pushdown 

automaton SM = (S, Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
), as defined above; 

and the adaptive mechanism AM = (AF, AC), comprises a set of 

adaptive functions, AF, and a function AC : δ
i
 ∪ δ

e
 → (AF)

2
. 

The function AC links each transition to a pair of adaptive 

functions to be executed before and after the transition. The set 

AF includes the special symbol ϵ, representing the empty 

adaptive function. The elements of AC are called adaptive 

actions, or adaptive function calls. 

Each adaptive function f ∈ AF is a set of elementary 

adaptive actions, of one of three kinds: search, erase and insert 

elementary action. Search actions are patterns used for 

selecting the transitions that erase and insert actions operate 

on. Patterns, in this context, are transition-shaped structures 

whose states, input symbols and adaptive actions may be 

replaced by variables and generators. In this work we choose 

to use implicit variable declarations. Each occurrence of a 

variable is prefixed with a question mark. Generators designate 

a symbol not used elsewhere, which is intended to be used in 

the dynamic creation of states in the automaton. Like variables, 

generators, denoted with the asterisk prefix, are implicitly 

declared. Implicit declarations are useful for graphical 

representation. Since graphics are essentially non-linear, they 

may be read from any directions (explicit declarations would 

eliminate this freedom). Finally, a reserved variable, ?c, is 

used for referencing the current state during automaton 

operation. This amendment may be used, in many cases, to 

replace the formerly defined [8] adaptive action parameter 

passing mechanism, which is not used here, so it has been 

omitted for simplicity. 

Figure 1 represents an adaptive automaton that recognizes 

the classical context-dependent language a
n
b

n
c

n
. The subjacent 

mechanism, SM, keeps reading the symbols a and calling the 

adaptive function F, denoted [.F] (the dot in the notation 

indicates that F is called after the execution of the state 

transition), for each symbol a read. The adaptive function just 

seeks for the ϵ transition (here working as a mark) and replaces 

it by a pair of transitions that reads the substring bc. The ϵ 

transition mark is kept between the transitions that read b and 

c, so that when the i-th a is input, the automaton will have a 

sequence of transitions that are able to consume the sequence 

b
i 
c

i
. 

 
Figure 1. Adaptive Automaton that Recognizes anbncn. (a) Adaptative 

Mechanism (b) Subjacent Mechanism. 

C.  Auxiliary Concepts and Definitions 

Definition Let M = (S, Q, µ, Σ, Q0, F, δ
i
, δ

e
) be an SPA and 

q ∈ Q. First: Q → 2
Q
 is a function where q' ∈ First(q) if and 

only if ∃σ ∈ Σ | (q, σx) ˫∗M (q' , x), x ∈ Σ∗ 1. It calculates the set 

of states reachable from q, after reading one symbol. 

Definition SFirst : Q → 2
Σ
 is a function where, for each q ∈ 

Q, σ ∈ SFirst(q) if and only if (q, σx) ˫∗M  (q', x), x ∈ Σ∗, q' ∈ 

First(q). 

Definition Given a state q ∈ Q from an SPA M, let First(q) 

= {q0, q1, ..., qn}. The function Second : Q → 2
Q
 is defined for 

each element q ∈ Q as: 

 

 
 

Given some state q ∈ Q, the reserved symbol θ will denote 

the set Σ − SFirst(q). Assume that each state q will carry a 

special transition, the error transition that is automatically 

activated whenever, being in q, the automaton reads a symbol 

in θ. The destination of such transition is a trap, non-final, 
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error state that will consume all the remainder of the input 

string. 

III.  CLASSIC SIMPLE ERROR RECOVERY 

Given a finite state automaton, an error-recovery strategy 

should extend the automaton to allow it to keep consuming the 

input string despite the error detected. Omission, insertion and 

substitution of a symbol in the input string are the only sources 

of simple errors, which may be recovered through the 

reinsertion of an omitted symbol, the omission of an inserted 

symbol or the substitution of a wrong symbol by the correct 

one. The elimination of incorrect symbols may be done by 

adding transitions consuming the wrong symbols in the current 

state and leading the automaton to a specific error recovery 

state. 

In order to complete our simple-error recovery mechanism, 

two further transitions are needed, replicating the normal 

transitions into the added extension: the first one departs from 

the new recovery state and the second, from the original state. 

A special care must be taken for preserving the structure of the 

original device: instead of inserting error-recovery transitions 

directly to the automaton, an empty-transition is added from 

the state in which the error is detected to an auxiliary error-

recovery state. In operation, such empty-transition is activated 

only when no other normal transition is allowed. That is 

achieved by imposing greater priority to normal transitions 

than to empty ones, and its effect is that the recovery extension 

is activated only in case of errors. 

The following algorithm implements the recovery scheme 

described: 

 
Input: FSA M = (Q, Σ, q0, F, δ) 

Output: M with Simple Error Recovery 

 

For each state q ∈ Q Do 
 Add two new states, e1 and e2, to Q 

Add the empty transition (q, ϵ, e1) to δ //Isolate 

Error States 

 

For each c ∈ Q − {First(q) ∪ Second(q)} do 
Add the transition (e1, c, e2) to δ //Consume 

Wrong Symbol 

For each qs ∈ Second(q) Do 
Let b be the symbol of Σ that guarantee the 

presence of qs in Second(q) 

Add the transition (e1, b, qs) to δ //Elimination 

Error 

Add the transition (e2, b, qs) to δ //Substitution 

Error 

For each qf ∈ First(q) Do 
Let a be the symbol of Σ that guarantee the 

presence of qf in First(q) 

Add the transition (e2, a, qf) to δ //Insertion 

Error 

If q is a final state then e2 must be made final too 

 

Assuming Σ = {a, b, c}, Figure 2 shows the application of 

the error recovery mechanism to state p. Added transitions 

appear in dotted lines. 

 
Figure 2. Simple Error Recovery 

IV.  PANIC MODE ERROR RECOVERY 

Further transitions may be added to the described extension, 

allowing multiple errors to be handled too. A simple way to 

include multiple-error-recovery consists in successively 

eliminating symbols from the input data until some special 

symbol is found that allows the automaton to proceed to some 

corresponding synchronization state. Although being forceful, 

this technique produces good results in most practical cases. 

By inspecting the language, a set of synchronizing symbols 

may be chosen such that their presence in the input text 

determines the start, the end or some significant point of the 

sentence. In order for this technique to be effective, we should 

choose synchronizing symbols that be likely to occur in typical 

input texts. In practice, it is usual to include symbols or 

keywords that delimit commands, expressions or groupings, as 

well as operators, separators and punctuation symbols. The 

best synchronization symbols are those that do not belong to 

more than one syntactic construct that are likely to occur 

simultaneously anywhere in the input text. From each new 

state created in the error-recovery extension, corresponding to 

the points where unsuitable symbols are discarded: 

 Add a set of transitions for eliminating all non-

synchronizing symbols, holding the automaton in the same 

state, until any synchronizing symbol is found. 

 Add a set of transitions for consuming any synchronizing 

input symbol, moving the automaton to the state it would 

reach in the original automaton upon finding such symbol 

in correct sentences 

This practice simulates replacing the discarded part of the 

input string by another one the automaton would expect to find 

instead. This technique has a wide application since the less 

the requirements on the use of the input string in case of 

multiple errors, the simpler its implementation will be. The 

following algorithm, which could be easily optimized if 

executed along the simple-error recovery, summarizes the 

multiple error recovery mechanism. 
 

Input: FSA M with Simple Error Recovery 

Output: M with Simple and Multiple Error Recovery 

Let S be the set of synchronizing symbols 

For each state e2 ∈ Q Do 

 For each s' ∉ S Do 
 Add the transition (e2, s', e2) to δ 

For each s ∈ S Do 
 Let qs be the destination state of the transition 

consuming s in M 

 Add the transition (e2, s, qs) to δ 



 

Obviously, the symbols in S that are more adequate for this 

purpose are those that, at least in the context of recovery have 

unique corresponding qs. Although the above technique has 

been use to complement the handling of simple errors, it may 

be used alone with the original automaton, especially for 

situations in which no rigorous recovery is needed. 

The procedure described so far is enough to recover errors 

in a finite state automaton. However, it generates too many 

states and transitions, and its behavior is often non-

deterministic. Additionally, error handling occurs only when 

there are errors in the input text, making the resulting 

extension remain unused in all normal cases. However, the 

extensions referring to each original state are mutually 

independent and independent of the original automaton, so it is 

possible to consider each of them separately, and to activate 

the proper one exclusively when the corresponding specific 

error is detected. Such independence creates an option for the 

designer, allowing that only the desired parts of the extension 

mechanism to be used. A practical option consists in pre-

building all recovery extensions without physically inserting 

them into the original automaton, and activating them from 

disk only when an actual error detection occurs. Another good 

option is the subject of this paper, and consists of building and 

executing the extensions strictly at run-time, when the error is 

actually detected. 

V.  ERROR RECOVERY IN SPA 

Many authors address error recovery in traditional LR and 

LL pushdown automata [9, 4]. Being structured pushdown 

automata deeply based on finite-state devices, we may adapt 

the methods described above in order to recover errors in 

structured pushdown automata. The following cases have to be 

considered in this case: 

 At internal transitions not involving final states all 

methods used for finite-state automata may be applied 

without change. 

 At sub-machine call the contents of the pushdown store 

change and some action must take place in response. 

 At sub-machine return, when a sub-machine finishes its 

operation, there is complementary change in the 

pushdown store, requiring some corresponding action. 

Final states in sub-machines conceptually differ from those 

in finite-state automata, since the former represent the end of 

the syntactic construct defined by the sub-machine while the 

later indicate the end of the whole sentence. Therefore, while 

the detection of an error at the final state of a finite-state 

automaton initiates some error-recovery procedure, a similar 

situation in a sub-machine must be interpreted as a valid 

condition for returning to its caller sub-machine. Therefore, on 

the detection of an error at some final state of a sub-machine 

that is not the final state of the automaton, we must verify the 

behavior of the automaton in all states reachable after 

returning and consuming the next input symbol. In addition to 

recovering errors corresponding to internal transitions we will 

now consider interrelations among sub-machines in our 

recovery strategy. As the definition of first and second 

successors are based on the step relation of structured 

pushdown automata, a careful reading reveals that they already 

apply to the cases described above. However, the algorithm 

must be slightly modified by replacing internal transitions to 

sub-machine calls, when some first or second successor does 

not belong to the same sub-machine. 

A.  Multiple-error recovery in SPA 

This scheme follows the one presented before for finite-

state automata. In addition to the intricate methods needed for 

finite-state error recovery, the contents of the pushdown store 

affect the behavior of the automaton, therefore two cases must 

be considered: errors detected while the sub-machine to which 

the destination states of the error-recovery transitions belong, 

and the more complex case in which such state belongs to the 

calling machine. For further cases, we will adopt empirical 

recovery criteria. 

In the first case, recovery may be locally done, since it 

considers only transitions internal to the sub-machine and 

independent of the pushdown store. In the second case, we 

need transitions from one sub-machine to another, conditioned 

to the pushdown store contents. In this case, we choose 

recovery transitions with destination states in the same sub-

machine the top of the pushdown store refers to. Error 

recovery involving the current sub-machine and some other 

external one must provide the elimination of information 

previously stacked in the pushdown store, so that some 

reference to that sub-machine is found in the pushdown store, 

which is also popped out. 

VI.  ADAPTIVE ERROR RECOVERY 

Implementing error-recovery with adaptive automata may 

be achieved as follows: attach to each error transition one 

adaptive function, say E1, which will perform structural 

transformations on the automata in order to absorb the error. 

This adaptive function will implement the error-recovery 

strategy described so far as an intrinsic part of the formalism. 

Some special transitions created by this adaptive function will 

call another adaptive function, E2, which erases all transitions 

created by E1. The adaptive solution also lowers space cost, 

since all transitions related to error-recovery, which should be 

replicated at all normal transitions in the classic solution are 

created and destroyed just as needed. Figure 3 illustrates 

adaptive functions E1 and E2. 

 

 
Figure 3. Adaptive Functions for Error Recovery 



 

The algorithms presented in this paper were implemented with 

AdapTools 1.1
2
, a software that offers a graphical environment 

where adaptive automata can be designed, implemented and 

tested. AdapTools embodies debugging and visualization 

tools, as well as a set of examples that may be executed by a 

special virtual machine included in the package. Among these 

examples is a compiler-compiler that produces a SPA-based 

syntactic acceptor, with the adaptive error-recovery described 

in this paper, from a Wirth notation grammar specification of 

the language. Figure 4 shows the AdapTools code that 

implements the example in Figure 2 using adaptive functions. 

E1 and E2 are the adaptive function shown in Figure 3. Using 

AdapTools we tested this automaton with different input string 

and could verify that it can recover from simple errors, 

growing in size only during the recovering process, returning 

to the initial size afterwards (due to the E2 adaptive function). 

Experiments comparing the adaptive and non-adaptive 

solutions were not conducted for this paper. 

 

 
Figure 4. Code for adaptive automata with error recovery in AdapTools  

 

VII.  CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a very practical approach to 

error-recovery, based on adaptive automata. This approach 

places the error-recovery scheme at the same formalization 

level of the subjacent structure, allowing error handling as a 

part of the machine. For instance, an adaptive automaton could 

be easily projected to dynamically turn the error-recovery 

procedures on and off, in response to adaptive actions. 

The time and space complexity of our adaptive error-

recovery approach is constant, both over the input string and 

the size of Q (states). The complexity depends on the 

transitions departing from a specific state, however, in 

practical problems, it does not lower the automata overall 

performance, since the size of the input alphabet is usually 

very small when compared to the size of the states set. 

Some future experiments using adaptive error-recovery 

include the use of the adaptive automata self-transformation 

power to create a more sophisticated error-recovery 
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mechanism. For instance, the error-recovery adaptive function 

may, interacting with the user or based on previous run 

information, detect the most likely corrections for specific 

errors, and change the structure permanently, so that further 

errors of the same kind will be automatically corrected. 

Another interesting research topic would be the extension of 

the adaptive error-recovery approach to deal with sequences of 

errors and the application of such extension to problems 

related to the edit-distance of two strings [7]. Error recovery is 

recently gaining attention from the computer vision community 

as some groups are reviving the syntactical pattern recognition 

approach augmented with recent advances in feature extraction 

techniques and more powerful machines [12, 13, 14].   
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