

Abstract — In this paper, we introduce a practical way to

implement an efficient error-recovery scheme intended to handle

incorrect input received by devices based on finite-state and

structured pushdown automata. We start proposing an exact

recovery scheme for single errors in deterministic finite-state

devices. Then, we extend this approach to perform local recovery in

the individual sub-machines of structured pushdown automata, and

we complement the proposed single error-recovery scheme by

considering non-deterministic devices and interactions among sub-

machines. Finally, we add a panic-mode scheme to the proposed

method in order to take into account even multiple-error inputs.

The chosen adaptive approach used in this strategy leaves

untouched the underlying original automaton until an error is

detected in its input stream. At this moment, an adaptive action is

taken that adequately extends the automaton in order to perform

the needed recovery in response to the detected error. Afterwards,

the transitions included in the extension are executed according to

the contents of the input stream, and when the underlying

automaton is reached anyway, the extension is discarded, restoring

the automaton to its original shape.

Keywords — Structured Pushdown Automata, Adaptive

Automata, Error Recovery, Compiler Construction.

I. INTRODUCTION

anguage acceptors are expected to recognize symbol

sequences belonging to the language they define. In

practice, strings given as input to language acceptors often

include misspellings and grammatical errors, and acceptors

must reject them in this case. When used within a language

processor, an acceptor should not simply reject the string, but

bypass the error in order to proceed searching for further

errors in its input.

In general, error-recovery is a complex subject, even when

focusing low-complexity devices such as finite-state automata

[1, 2, 3, 4, 5, 6, 9, 10, 11]. Two adjacent errors are called

simple when they are sufficiently far apart that their effects in

the behavior of the automaton are not superposed, otherwise

they are said to be multiple. By observing practical programs,

one may remark that simple errors are significantly more likely

to occur than multiple ones, and that for most practical

situations no complex methods are needed for handling them.

Nevertheless, multiple errors do occur, and by handling them

J. J. Neto, Polytechnic School of the University of São Paulo (EPUSP),

São Paulo, Brazil, joao.jose@poli.usp.br

H. Pistori, Dom Bosco Catholic University (UCDB), Campo Grande,

Mato Grosso do Sul, Brazil, pistori@ucdb.br

A. A. Castro Jr., Federal University of Mato Grosso do Sul (UFMS),

Ponta Porã, Mato Grosso do Sul, Brazil, amaury.ufms@gmail.com

M. R. Borth, Federal Institute of Mato Grosso do Sul (IFMS), Ponta Porã,

Mato Grosso do Sul, Brazil, marceloborth@gmail.com

as exceptions, it is possible to concentrate efforts in recovering

simple errors.

The presence of an error in the input text is detected

whenever the acceptor cannot perform any valid transition in

response to some input symbol. Symptoms of the presence of

an error seldom occur in its neighborhood, leading the

acceptor to mistakenly perform a sequence of transitions

before rejecting the input string. Although being inadequate

for the particular input string being handled, note that those

transitions would be perfectly valid for other correct input

sentences. Such unavoidable imprecision usually make

automatic error-repair procedures far worse than a manual

correction performed by the text’s author. Therefore, instead

of viewing error recovery as an approach to fix the input text

errors, we will use it for re-synchronizing the acceptor with its

wrong input string, and proceed searching for further errors.

An adaptive automaton is an adaptive rule-driven device

whose subjacent mechanism is a structured pushdown

automaton. This formalism preserves intact most part of the

clean syntax of structured pushdown automata, allowing a very

intuitive view for the resulting Turing-powerful formalism as

an automata with a dynamically changeable set of transitions.

Such modifications are expressed through a very simple

language where queries, deletions and insertions of transitions

are specified by adaptive functions to be executed just before

or after the execution of some transition. The self-modification

required to model an error-recovery behavior can be elegantly

captured by adaptive automata. The efficiency of such method

is also discussed and illustrated in this work, through the

analysis of an implemented scheme of adaptive error-recovery.

The next section provides some notational revision for

structured pushdown automata and adaptive automata.

Afterwards, a classical error-recovery mechanism is presented.

Section 7 presents in details our adaptive error-recovery

approach, describing also some implemented examples. Last

section gives some conclusions and future work proposals.

II. NOTATION

A. Structured Pushdown Automata Revisited

A structured pushdown automaton (SPA) may be viewed as

a set of finite state machines with special transitions for

passing the execution control back and forth among machines.

Formally, a structured pushdown automaton is a tuple M = (S,

Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
) where:

 S is a finite non-empty set of sub-machines.

 Q is a finite non-empty set of states.

J. J. Neto, H. Pistori, A. A. Castro Jr. and M. R. Borth

An Adaptive Approach for Error-Recovery in

Structured Pushdown Automata

L

 µ: Q → S is a function. The inverse of µ, µ', induces a

partition on set Q, with each part corresponding to the set

of states of each sub-machine. Given a sub-machine s ∈ S,

µ' (s) ⊆ Q is the set of states of s.

 Σ is a finite non-empty input alphabet.

 Γ is a finite set that is called the stack alphabet.

 Q0 ⊆ Q is a set of initial states where, for each s ∈ S, | µ'

(s) ∩ Q0 | = 1 (Each sub-machine has one, an only one,

initial state).

 F is a set of final states, which also corresponds to sub-

machine return transition.

 δ
i
 is a relation over µ' (s) × Σ ∪ {ϵ} × µ' (s), where s ∈ S.

Each element of this relation is called an internal

transition.

 δ
e
 is a relation over µ' (s) × S × µ' (s). Each element (q, m,

q') ∈ δ
e
 is denominated an external transition or a sub-

machine call, and can be interpreted as a sub-machine call

from state q to the sub-machine m pushing the state q'

onto a pushdown store.

Configurations in SPA are triples (q, x, z) where q ∈ Q is the

current state, x ∈ Σ∗ is the part of input string yet to be read

and z ∈ Q∗ is the content of the pushdown store, holding a

sequence of sub-machine return addresses. When δ
e
 = Ø and

|S| = 1 the SPA specializes to an ϵ-FSA, operating as such (the

third element is not used). Otherwise, the step relation, ˫,

which determines the machine operation, is extended to

comprise the sub-machine call and return dynamics. Formally,

given a SPA M = (S, Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
), q, q' ∈ Q, σ ∈ Σ

∪ {ϵ}, x ∈ Σ∗, y, y' ∈ Q∗ we have (q, σx, y) ˫M (q', x, y') if and

only if one of these three conditions apply:

1. (q, σ, q') ∈ δ
i
, y = y' and µ(q) = µ(q'). [Internal transition]

2. (q, s, p) ∈ δ
e
, q' ∈ Q0 ∩ µ' (s), y' = py, µ(q) = µ(p) and σ = ϵ.

[Sub-machine call]

3. q ∈ F, y = q' y' and σ = ϵ. [Sub-machine return]

B. Adaptive Automata Revisited

An adaptive automaton is an adaptive device AD = (SM, AM)

whose subjacent mechanism is a structured pushdown

automaton SM = (S, Q, µ, Σ, Γ, Q0, F, δ
i
, δ

e
), as defined above;

and the adaptive mechanism AM = (AF, AC), comprises a set of

adaptive functions, AF, and a function AC : δ
i
 ∪ δ

e
 → (AF)

2
.

The function AC links each transition to a pair of adaptive

functions to be executed before and after the transition. The set

AF includes the special symbol ϵ, representing the empty

adaptive function. The elements of AC are called adaptive

actions, or adaptive function calls.

Each adaptive function f ∈ AF is a set of elementary

adaptive actions, of one of three kinds: search, erase and insert

elementary action. Search actions are patterns used for

selecting the transitions that erase and insert actions operate

on. Patterns, in this context, are transition-shaped structures

whose states, input symbols and adaptive actions may be

replaced by variables and generators. In this work we choose

to use implicit variable declarations. Each occurrence of a

variable is prefixed with a question mark. Generators designate

a symbol not used elsewhere, which is intended to be used in

the dynamic creation of states in the automaton. Like variables,

generators, denoted with the asterisk prefix, are implicitly

declared. Implicit declarations are useful for graphical

representation. Since graphics are essentially non-linear, they

may be read from any directions (explicit declarations would

eliminate this freedom). Finally, a reserved variable, ?c, is

used for referencing the current state during automaton

operation. This amendment may be used, in many cases, to

replace the formerly defined [8] adaptive action parameter

passing mechanism, which is not used here, so it has been

omitted for simplicity.

Figure 1 represents an adaptive automaton that recognizes

the classical context-dependent language a
n
b

n
c

n
. The subjacent

mechanism, SM, keeps reading the symbols a and calling the

adaptive function F, denoted [.F] (the dot in the notation

indicates that F is called after the execution of the state

transition), for each symbol a read. The adaptive function just

seeks for the ϵ transition (here working as a mark) and replaces

it by a pair of transitions that reads the substring bc. The ϵ

transition mark is kept between the transitions that read b and

c, so that when the i-th a is input, the automaton will have a

sequence of transitions that are able to consume the sequence

b
i
c

i
.

Figure 1. Adaptive Automaton that Recognizes anbncn. (a) Adaptative

Mechanism (b) Subjacent Mechanism.

C. Auxiliary Concepts and Definitions

Definition Let M = (S, Q, µ, Σ, Q0, F, δ
i
, δ

e
) be an SPA and

q ∈ Q. First: Q → 2
Q
 is a function where q' ∈ First(q) if and

only if ∃σ ∈ Σ | (q, σx) ˫∗M (q' , x), x ∈ Σ∗ 1. It calculates the set

of states reachable from q, after reading one symbol.

Definition SFirst : Q → 2
Σ
 is a function where, for each q ∈

Q, σ ∈ SFirst(q) if and only if (q, σx) ˫∗M (q', x), x ∈ Σ∗, q' ∈

First(q).

Definition Given a state q ∈ Q from an SPA M, let First(q)

= {q0, q1, ..., qn}. The function Second : Q → 2
Q
 is defined for

each element q ∈ Q as:

Given some state q ∈ Q, the reserved symbol θ will denote

the set Σ − SFirst(q). Assume that each state q will carry a

special transition, the error transition that is automatically

activated whenever, being in q, the automaton reads a symbol

in θ. The destination of such transition is a trap, non-final,

1 ˫∗ denotes the transitive closure of the step relation, ˫

error state that will consume all the remainder of the input

string.

III. CLASSIC SIMPLE ERROR RECOVERY

Given a finite state automaton, an error-recovery strategy

should extend the automaton to allow it to keep consuming the

input string despite the error detected. Omission, insertion and

substitution of a symbol in the input string are the only sources

of simple errors, which may be recovered through the

reinsertion of an omitted symbol, the omission of an inserted

symbol or the substitution of a wrong symbol by the correct

one. The elimination of incorrect symbols may be done by

adding transitions consuming the wrong symbols in the current

state and leading the automaton to a specific error recovery

state.

In order to complete our simple-error recovery mechanism,

two further transitions are needed, replicating the normal

transitions into the added extension: the first one departs from

the new recovery state and the second, from the original state.

A special care must be taken for preserving the structure of the

original device: instead of inserting error-recovery transitions

directly to the automaton, an empty-transition is added from

the state in which the error is detected to an auxiliary error-

recovery state. In operation, such empty-transition is activated

only when no other normal transition is allowed. That is

achieved by imposing greater priority to normal transitions

than to empty ones, and its effect is that the recovery extension

is activated only in case of errors.

The following algorithm implements the recovery scheme

described:

Input: FSA M = (Q, Σ, q0, F, δ)

Output: M with Simple Error Recovery

For each state q ∈ Q Do
 Add two new states, e1 and e2, to Q

Add the empty transition (q, ϵ, e1) to δ //Isolate

Error States

For each c ∈ Q − {First(q) ∪ Second(q)} do
Add the transition (e1, c, e2) to δ //Consume

Wrong Symbol

For each qs ∈ Second(q) Do
Let b be the symbol of Σ that guarantee the

presence of qs in Second(q)

Add the transition (e1, b, qs) to δ //Elimination

Error

Add the transition (e2, b, qs) to δ //Substitution

Error

For each qf ∈ First(q) Do
Let a be the symbol of Σ that guarantee the

presence of qf in First(q)

Add the transition (e2, a, qf) to δ //Insertion

Error

If q is a final state then e2 must be made final too

Assuming Σ = {a, b, c}, Figure 2 shows the application of

the error recovery mechanism to state p. Added transitions

appear in dotted lines.

Figure 2. Simple Error Recovery

IV. PANIC MODE ERROR RECOVERY

Further transitions may be added to the described extension,

allowing multiple errors to be handled too. A simple way to

include multiple-error-recovery consists in successively

eliminating symbols from the input data until some special

symbol is found that allows the automaton to proceed to some

corresponding synchronization state. Although being forceful,

this technique produces good results in most practical cases.

By inspecting the language, a set of synchronizing symbols

may be chosen such that their presence in the input text

determines the start, the end or some significant point of the

sentence. In order for this technique to be effective, we should

choose synchronizing symbols that be likely to occur in typical

input texts. In practice, it is usual to include symbols or

keywords that delimit commands, expressions or groupings, as

well as operators, separators and punctuation symbols. The

best synchronization symbols are those that do not belong to

more than one syntactic construct that are likely to occur

simultaneously anywhere in the input text. From each new

state created in the error-recovery extension, corresponding to

the points where unsuitable symbols are discarded:

 Add a set of transitions for eliminating all non-

synchronizing symbols, holding the automaton in the same

state, until any synchronizing symbol is found.

 Add a set of transitions for consuming any synchronizing

input symbol, moving the automaton to the state it would

reach in the original automaton upon finding such symbol

in correct sentences

This practice simulates replacing the discarded part of the

input string by another one the automaton would expect to find

instead. This technique has a wide application since the less

the requirements on the use of the input string in case of

multiple errors, the simpler its implementation will be. The

following algorithm, which could be easily optimized if

executed along the simple-error recovery, summarizes the

multiple error recovery mechanism.

Input: FSA M with Simple Error Recovery

Output: M with Simple and Multiple Error Recovery

Let S be the set of synchronizing symbols

For each state e2 ∈ Q Do

 For each s' ∉ S Do
 Add the transition (e2, s', e2) to δ

For each s ∈ S Do
 Let qs be the destination state of the transition

consuming s in M

 Add the transition (e2, s, qs) to δ

Obviously, the symbols in S that are more adequate for this

purpose are those that, at least in the context of recovery have

unique corresponding qs. Although the above technique has

been use to complement the handling of simple errors, it may

be used alone with the original automaton, especially for

situations in which no rigorous recovery is needed.

The procedure described so far is enough to recover errors

in a finite state automaton. However, it generates too many

states and transitions, and its behavior is often non-

deterministic. Additionally, error handling occurs only when

there are errors in the input text, making the resulting

extension remain unused in all normal cases. However, the

extensions referring to each original state are mutually

independent and independent of the original automaton, so it is

possible to consider each of them separately, and to activate

the proper one exclusively when the corresponding specific

error is detected. Such independence creates an option for the

designer, allowing that only the desired parts of the extension

mechanism to be used. A practical option consists in pre-

building all recovery extensions without physically inserting

them into the original automaton, and activating them from

disk only when an actual error detection occurs. Another good

option is the subject of this paper, and consists of building and

executing the extensions strictly at run-time, when the error is

actually detected.

V. ERROR RECOVERY IN SPA

Many authors address error recovery in traditional LR and

LL pushdown automata [9, 4]. Being structured pushdown

automata deeply based on finite-state devices, we may adapt

the methods described above in order to recover errors in

structured pushdown automata. The following cases have to be

considered in this case:

 At internal transitions not involving final states all

methods used for finite-state automata may be applied

without change.

 At sub-machine call the contents of the pushdown store

change and some action must take place in response.

 At sub-machine return, when a sub-machine finishes its

operation, there is complementary change in the

pushdown store, requiring some corresponding action.

Final states in sub-machines conceptually differ from those

in finite-state automata, since the former represent the end of

the syntactic construct defined by the sub-machine while the

later indicate the end of the whole sentence. Therefore, while

the detection of an error at the final state of a finite-state

automaton initiates some error-recovery procedure, a similar

situation in a sub-machine must be interpreted as a valid

condition for returning to its caller sub-machine. Therefore, on

the detection of an error at some final state of a sub-machine

that is not the final state of the automaton, we must verify the

behavior of the automaton in all states reachable after

returning and consuming the next input symbol. In addition to

recovering errors corresponding to internal transitions we will

now consider interrelations among sub-machines in our

recovery strategy. As the definition of first and second

successors are based on the step relation of structured

pushdown automata, a careful reading reveals that they already

apply to the cases described above. However, the algorithm

must be slightly modified by replacing internal transitions to

sub-machine calls, when some first or second successor does

not belong to the same sub-machine.

A. Multiple-error recovery in SPA

This scheme follows the one presented before for finite-

state automata. In addition to the intricate methods needed for

finite-state error recovery, the contents of the pushdown store

affect the behavior of the automaton, therefore two cases must

be considered: errors detected while the sub-machine to which

the destination states of the error-recovery transitions belong,

and the more complex case in which such state belongs to the

calling machine. For further cases, we will adopt empirical

recovery criteria.

In the first case, recovery may be locally done, since it

considers only transitions internal to the sub-machine and

independent of the pushdown store. In the second case, we

need transitions from one sub-machine to another, conditioned

to the pushdown store contents. In this case, we choose

recovery transitions with destination states in the same sub-

machine the top of the pushdown store refers to. Error

recovery involving the current sub-machine and some other

external one must provide the elimination of information

previously stacked in the pushdown store, so that some

reference to that sub-machine is found in the pushdown store,

which is also popped out.

VI. ADAPTIVE ERROR RECOVERY

Implementing error-recovery with adaptive automata may

be achieved as follows: attach to each error transition one

adaptive function, say E1, which will perform structural

transformations on the automata in order to absorb the error.

This adaptive function will implement the error-recovery

strategy described so far as an intrinsic part of the formalism.

Some special transitions created by this adaptive function will

call another adaptive function, E2, which erases all transitions

created by E1. The adaptive solution also lowers space cost,

since all transitions related to error-recovery, which should be

replicated at all normal transitions in the classic solution are

created and destroyed just as needed. Figure 3 illustrates

adaptive functions E1 and E2.

Figure 3. Adaptive Functions for Error Recovery

The algorithms presented in this paper were implemented with

AdapTools 1.1
2
, a software that offers a graphical environment

where adaptive automata can be designed, implemented and

tested. AdapTools embodies debugging and visualization

tools, as well as a set of examples that may be executed by a

special virtual machine included in the package. Among these

examples is a compiler-compiler that produces a SPA-based

syntactic acceptor, with the adaptive error-recovery described

in this paper, from a Wirth notation grammar specification of

the language. Figure 4 shows the AdapTools code that

implements the example in Figure 2 using adaptive functions.

E1 and E2 are the adaptive function shown in Figure 3. Using

AdapTools we tested this automaton with different input string

and could verify that it can recover from simple errors,

growing in size only during the recovering process, returning

to the initial size afterwards (due to the E2 adaptive function).

Experiments comparing the adaptive and non-adaptive

solutions were not conducted for this paper.

Figure 4. Code for adaptive automata with error recovery in AdapTools

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a very practical approach to

error-recovery, based on adaptive automata. This approach

places the error-recovery scheme at the same formalization

level of the subjacent structure, allowing error handling as a

part of the machine. For instance, an adaptive automaton could

be easily projected to dynamically turn the error-recovery

procedures on and off, in response to adaptive actions.

The time and space complexity of our adaptive error-

recovery approach is constant, both over the input string and

the size of Q (states). The complexity depends on the

transitions departing from a specific state, however, in

practical problems, it does not lower the automata overall

performance, since the size of the input alphabet is usually

very small when compared to the size of the states set.

Some future experiments using adaptive error-recovery

include the use of the adaptive automata self-transformation

power to create a more sophisticated error-recovery

2 Freely available at https://code.google.com/p/adaptools/

mechanism. For instance, the error-recovery adaptive function

may, interacting with the user or based on previous run

information, detect the most likely corrections for specific

errors, and change the structure permanently, so that further

errors of the same kind will be automatically corrected.

Another interesting research topic would be the extension of

the adaptive error-recovery approach to deal with sequences of

errors and the application of such extension to problems

related to the edit-distance of two strings [7]. Error recovery is

recently gaining attention from the computer vision community

as some groups are reviving the syntactical pattern recognition

approach augmented with recent advances in feature extraction

techniques and more powerful machines [12, 13, 14].

REFERENCES

[1] A. V. Aho and J. D. Ullman, “The Theory of Parsing, Translation and

Compiling”, vol. 1 and 2. Prentice Hall, 1979.

[2] R. C. Backhouse, “Syntax of Programming Languages - Theory and

Practice”. Prentice Hall, 1979.

[3] W. A. Barrett and J. D. Couch, “Compiler Construction - Theory and

Practice”. SRA, 1979.

[4] K. J. Gough, “Syntax Analysis and Software Tools”. Addison-Wesley,

1988.

[5] R. Hunter, “The Design and Construction of Compilers”. John Wiley

and Sons, 1981.

[6] S. Llorca and G. Pascual, “Compiladores - Teoría y Construcción”.

Paraninfo, 1986.

[7] M. Mohri, “Edit-distance of weighted automata”. Conference on

Implementation and Application of Automata - CIAA 2002 (July

2002), 7–29.

[8] J. J. Neto, “Adaptive automata for context-sensitive languages”.

SIGPLAN NOTICES 29, 9 (September 1994), 115–124.

[9] J. P. Tremblay and P. G. Sorenson, “The Theory and Practice of

Compiler Writing”. McGraw-Hill, 1985.

[10] W. M. Waite and G. Goos, “Compiler Construction”. Springer-Verlag,

1984.

[11] F. Almeida, J. Urquiza, Á. Velázquez, "Educational visualizations of

syntax error recovery", 1st Annual IEEE Engineering Education

Conference (EDUCON 2010), 2010, pp. 1019-1027.

[12] H. Pistori, P. Flach, A. Calway, “A new strategy for applying

grammatical inference to image classification problems”, IEEE-ICIT

International Conference on Industrial Technology (February 2013),

2013.

[13] B. Yao, X. Yang, L. Lin, M. Lee, and S. Zhu, “I2t: Image parsing to

text description,” Proceedings of IEEE, vol. 98, no. 8, pp. 1485–1508,

August 2010.

[14] R. Damaševičius, “Structural analysis of regulatory DNA sequences

using grammar inference and support vector machine”

Neurocomputing, vol. 73, pp. 633–638, January 2010

João José Neto holds a BS in Electrical Engineering
(1971), Master in Electrical Engineering (1975), Ph.D.
in Electrical Engineering (1980) and full professor
(1993) from the Polytechnic School of the University of
São Paulo. He is currently associate professor at the
Polytechnic School of the University of São Paulo and
coordinates LTA – Laboratory of Languages an
Adaptive Technology of PCS – Department of
Computer Engineering and Digital Systems EPUSP.
Has experience in the area of Computer Science, with

emphasis on Fundamentals of Computer Engineering, acting on the following
topics: adaptive devices, adaptive technology, adaptive automata, and its
applications to computer engineering, particularly in adaptive decision
making systems, analysis and processing of natural languages, compiler
construction, robotics, computer-assisted teaching, modeling of intelligent
systems, machine learning processes and inferences based on adaptive
technology.

https://code.google.com/p/adaptools/

Hemerson Pistori (Três Lagoas, MS, Brazil, 1970)
coordinates the R&D&i computer vision group,
INOVISAO, at the Dom Bosco Catholic University,
UCDB, where he works since 1993. Professor Hemerson
was a founder of the department of Computer
Engineering at UCDB and has held the position of
department head from 1998 to 2001. He also served as
the chairperson of UCDB's scientific committee, as the
director of research and since 2009 is the Dean of
Research and Graduate Studies of this institution. He

holds a permanent professor position at the Biotechnology graduate program
and recently helped to implement a new graduate program on Environment
Science and Agriculture Sustainability at UCDB. His BA and MA in
Computer Science were obtained from the UFMS and UNICAMP
universities, respectively, and the Ph.D. in Computer Engineering was held at
USP. From 2011 to 2012 he stayed 6 months with the University of Bristol,
UK, as a visiting researcher.

Amaury Antônio de Castro Junior is graduated in
Computer Science at Federal University of Mato Grosso
do Sul (1997), Masters in Computer Science at Federal
University of Mato Grosso do Sul (2003) and Ph.D. at
Polytechnic School of the University of Sao Paulo
(2009). Currently holds the position of Regional
Secretary of the SBC (Brazilian Computer Society),
responsible for the state of Mato Grosso do Sul. Works
since 2006 as associate professor at Federal University
of Mato Grosso do Sul (UFMS) - Campus Ponta Pora

(CPPP). Was the founder of Ponta Porã's Robotic Laboratory (LaRPP) and
coordinates several projects of research and extension. Currently working
with applied research on robotics and related areas. Has experience in
Computer Science, with an emphasis Theory of Computing, acting on the
following subjects: Adaptive Technologies, Adaptive Automata, Design of
Programming Languages and Computer Model.

Marcelo Rafael Borth is Ph.D. candidate in
Environmental Sciences and Agricultural Sustainability
at Dom Bosco Catholic University - UCDB, masters in
Computer Science at State University of Maringá - UEM
and graduated in Information Systems at Paranaense
University. Works as Professor at Federal Institute of
Education, Science and Technology of Mato Grosso do
Sul (IFMS - Ponta Porã). Awarded as outstanding
student by SBC (Brazilian Computer Society) in 2006.
Provided consultancy in software projects in Brazil and

abroad. Has 3 Java certifications, OCJA, OCPJP and OCPWCD. Has
experience in Computer Science, with emphasis on Pattern Recognition,
Machine Learning, Semantic Web and Information Retrieval.

