Segmentação baseada em Textura e Watershed aplicada a Imagens de Pólen

Wesley Tessaro Andrade, Lia Nara Balta Quinta, Ariadne Barbosa Gonçalves, Marney Pascoli Cereda e

Hemerson Pistori

Grupo INOVISAO e Departamento de Biotecnologia Universidade Católica Dom Bosco, UCDB

Campo Grande, MS, Brasil

Resumo—A contagem e classificação de grãos de pólen em amostras de mel é realizada atualmente de forma visual e esta tarefa é exaustiva e suscetível a erros devido ao desgaste humano. Neste artigo é proposta a segmentação dos grãos de pólen presentes em imagens de amostras de mel capturadas através de um microscópio digital, usando a técnica de segmentação por Watershed. Foram usados atributos de textura, desfocagem gaussiana e limiarização, com o objetivo de melhorar o resultado da segmentação. Utilizando a biblioteca do ImageJ foi desenvolvido um módulo em JAVA capaz de realizar a segmentação do grão de forma automática. Usando métricas de comparação de pixel, Percentual de Classificação Correta (*PCC*), *Jaccard* e *Yule*, o resultado mais preciso apresentou o *PCC* superior a 99%.

Keywords-Segmentação Watershed, Descritores de textura, Desfocagem gaussiana, Limiarização.

I. INTRODUÇÃO

O setor apícula, geralmente formado por pequenos produtores ou empresas especializadas, encontra-se em grande desenvolvimento. O Brasil é atualmente o 11º maior produtor de mel, e como exportador ocupa o 5º lugar de maior exportador [16]. Os produtos apículas trazem diversos benefícios tanto econômicos, com a comercialização para a região local e exterior, quanto sociais, com a geração de empregos, desenvolvimento local, além dos benefícios alimentares que o produto fornece [14].

Como consumidores os humanos se interessam em conhecer a origem geográfica e a composição nutricional dos produtos apículas. A exigência do mercado faz com que os produtores se adaptem às normas e a padrões estabelecidos visando o aumento da qualidade do produto, facilidade de produção e classificação. A qualidade do mel produzido depende de diversos fatores, incluindo o tipo de planta. As características do produto são muito importantes para sua aceitação tanto no mercado nacional quanto internacional [12]. Na Europa a composição do produto incluindo a produção é regulamentada pelo Conselho Diretivo 74/409/EEC, o qual exige que as importações do produto passem por controle de qualidade [5]. O regulamento técnico do MERCOSUL GMC 89/99 se refere apenas a identidade e qualidade do mel, com objetivo de padronizar e estabelecer a qualidade do produto para o consumo humano, o requisito 4.2.2.2.C exige a presença de grãos de pólens para o produto ser considerado mel [12]. A análise polínica do mel é uma etapa importante para a classificação do produto, pois informa a quantidade e as espécies presentes na amostra auxiliando também na identificação do local de produção, pois cada região possui sua característica de vegetação e os tipos de grãos de pólens variam de uma região para outra. Nesta análise é possível a determinação da origem floral, pois quando a abelha coleta o néctar das flores os grãos de pólens da planta ficam sobre o animal e são levados juntamente para a colmeia [4]. Atualmente a análise de predominância e da quantidade de espécies presentes no mel é realizada de forma visual, sendo uma tarefa exaustiva e detalhada. Além do tempo que demanda este processo podem ocorrer erros de contagem devido ao desgaste humano. O objetivo geral do projeto POLEN¹ é desenvolver um sistema capaz de realizar a classificação de forma automática dos grãos presentes nas amostras com a mesma precisão humana.

O objetivo de realizar a segmentação em problemas de classificação é decompor a imagem em sub-imagens, excluindo regiões que não são importantes e extraindo partes de interesse. Esta etapa diminui o processamento computacional desnecessário e aumenta a taxa de acerto do classificador, evitando a tentativa de classificação de regiões não importantes ao problema [7].

Para um bom resultado no processo da classificação das amostras é necessário que a segmentação e os outros processos anteriores não tragam informações erradas, como ruídos, por exemplo. No projeto POLEN, o intuito de haver processos anteriores ao da classificação, como a segmentação, é filtrar o máximo de informações irrelevantes, aumentando a velocidade e a precisão no resultado. Neste trabalho é proposta a utilização da segmentação por Watershed, em conjunto com algoritmos de pré-processamento, filtragem gaussiana, e extração de atributos de textura, como o descritor de entropia por histograma de primeira ordem e os descritores de contraste, correlação e IDM baseados em histogramas de segunda ordem. Com base nos resultados será apresentado o melhor descritor de textura proposto e a melhor combinação de suavização para o problema de segmentação dos grãos de pólen para o banco de imagens utilizado. O trabalho está organizado em cinco seções. A Seção II apresenta a base teórica das técnicas utilizadas. Na Seção III é apresentado o delineamento experimental, onde são descritas as ferramentas e a maneira como foram realizados os testes. A Seção IV apresenta os resultados experimentais e a discussão dos mes-

 $^{1}http://trac.gpec.ucdb.br/wiki/site_melvic$

mos. Por final, na Seção V são mostradas as conclusões e os trabalhos futuros.

II. FUNDAMENTAÇÃO TEÓRICA

A. Segmentação Watershed

A segmentação por Watershed, ou linhas divisórias, é uma técnica de segmentação baseada em crescimento de regiões, aplicada em imagens em escala de cinza, que é um tema muito frequente na literatura [9][10][17]. A técnica pode ser entendida fazendo uma analogia a topografia, em que regiões com *pixels* de valores altos, ou regiões claras representam as montanhas, e regiões com pixels de valores baixos, ou regiões escuras representam os vales. Suponha que há uma perfuração em cada vale e que ocorre a inundação dessas regiões, a água irá subindo até encontrar águas de outros vales. No momento que elas se tocam é criada uma linha perpendicular à superfície da água passando sobre o ponto de encontro entre a água desses dois vales, formando assim linhas divisórias (dams) para que a água de uma determinada região não se toque com a outra. Desse modo, quando a água atinge seu ponto no relevo, o processo tem fim [13]. Por ser uma técnica dependente dos valores dos *pixels*, há uma alta sensibilidade a ruídos, gerando resultados denominados na literatura de oversegmentation [15][3]. A Figura 1 (a) ilustra a imagem original e a Figura 1 (b) representa a segmentação da imagem original sem a filtragem de ruídos.

Figura 1. (a) Imagem original (b) Imagem com over-segmentation

B. Desfocagem gaussiana

O filtro de desfocagem gaussiana é o mais conhecido do tipo LPF (Low-Pass Filter), ou filtro passa baixa. O objetivo do uso deste filtro é a borragem da imagem, diminuindo assim a quantidade excessiva de informações, como ruídos. Nesse filtro, há um parâmetro denominado σ que está relacionado à largura da gaussiana, quanto maior o valor da variável σ , maior a suavização. Tal ferramenta é comumente usada em algoritmos de detecção de contornos, pois geralmente estes algoritmos são muito sensíveis a ruídos na imagem. O valor do σ irá depender diretamente do tipo do problema, pois a desfocagem além da filtragem de ruído também pode perder informações importantes da imagem, como bordas de objetos. A Figura 2 ilustra este problema, onde 2.(a) representa a imagem original, e o uso do filtro de desfocagem gaussiana com diversos valores de σ , sendo estes: 2.(b) $\sigma = 5$, 2.(c) $\sigma = 10$, 2.(d) $\sigma = 15$, 2.(e) $\sigma = 20$ e 2.(f) $\sigma = 25$. Quando conciliado a segmentação por Watershed os resultados são melhores devido a filtragem

Figura 2. (a) Representa a figura original, e as representações a seguir com valores de σ : (b) $\sigma = 5$, (c) $\sigma = 10$, (c) $\sigma = 15$, (d) $\sigma = 20$, (e) $\sigma = 25$ e (f) $\sigma = 30$

de ruídos e a homogeneidade de *pixels* dos objetos e do fundo, a Figura 3 (a) ilustra a imagem original, (b) a segmentação por Watershed aplicada diretamente sobre a imagem, (c) imagem resultante da filtragem gaussiana com $\sigma = 50$ (d) segmentação por Watershed usando o filtro de suavização gaussiana.

Figura 3. (a) Representa a figura original e (c) a imagem resultante da filtragem gaussiana usando $\sigma = 50$, e as segmentações: (b) segmentaçõo por Watershed diretamente sobre a imagem original, (d) segmentaçõo da imagem.

C. Análise de textura

A textura é uma importante característica para identificar um objeto ou uma região de interesse [8]. Isso é possível devido a organização das cores na imagem. Para extrair informações sobre a organização dos *pixels* na imagem podem ser utilizados descritores de textura. Neste trabalho, os descritores foram divididos em dois grupos, os descritores extraídos a partir do histograma de primeira ordem e os descritores extraídos do histograma de segunda ordem, conhecido também como matriz de coocorrência.

O histograma de primeira ordem é obtido pela frequência em que cada *pixel* ocorre na imagem ou em alguma parte (janela) da imagem, o histograma não traz consigo informações espaciais como ocorre com o histograma de segunda ordem. Para imagens em escala de cinza o histograma pode ser extraído usando um vetor com 256 posições, em que os índices representam o valor da cor e o conteúdo do vetor representa a frequência da ocorrência de cada *pixel* de uma determinada cor. É possível usar neste histograma apenas descritores que não levam em consideração as informações espaciais do *pixel* e, por esse motivo, possuem baixo custo computacional. Entre estes descritores se destaca o descritor de entropia que será utilizado neste trabalho.

O histograma de segunda ordem, também conhecido como matriz de coocorrência ou ocorrência simultânea é uma matriz, ou tabela, que descreve a relação entre o valor do *pixel* e seus vizinhos. Tal ferramenta é amplamente usada na visão computacional [11]. A matriz é calculada a partir de índices, linhas e colunas, que representam os valores de níveis de cinzas. É escolhida uma direção, as mais usadas são 0°, 45°, 90° e 135°, e uma distância que é definida pela granularidade da imagem usada. Com os parâmetros definidos é calculada a matriz de coocorrência para cada direção e para cada distância [1]. A matriz de coocorrência fornece informações de relação espacial entre os *pixels* e os seus vizinhos da imagem. A obtenção

da matriz é apenas um passo intermediário para se chegar aos atributos. Para extrair os atributos de textura é necessário obter informações da matriz extraída, essas informações são capazes de retornar atributos de entropia, contraste, correlação, variância, energia e homogeneidade por exemplo [6].

Utilizando a extração dos atributos de textura por meio de descritores aplicados na imagem seja ela original ou préprocessada, é possível construir uma imagem final com a mesma resolução contendo a medida estatística do pixel com seus vizinhos extraídos pelos histogramas de primeira ou de segunda ordem. Este processo pode ser realizado fracionando a imagem de interesse em janelas, e para cada janela são calculados os atributos de textura. Inicialmente é escolhida a quantidade de vizinhos de avaliação, esse processo ocorre para cada pixel. Com essa informação, uma janela contendo o pixel central e seus vizinhos é criada. Após calcular um quadro, ocorre um deslocamento e um novo quadro é formado em outra região da imagem, esse processo ocorre até o fim da imagem. O algoritmo é executado de forma seguencial, tendo inicio na coordenada (0,0) indo até a coordenada (x,y), sendo x e y a quantidade de linhas e colunas respectivamente, a Figura 4 ilustra este processo utilizando tamanho de janela igual à 1 (vizinho), sendo 4.(a) o início do processo, é a primeira região da imagem, 4.(b) ilustra uma região com deslocamento de 1 pixel da primeira região, 4.(c) o processo realizado no centro da matriz imagem e em 4.(d) ilustra o final do processo. Após este corte é realizado o cálculo do descritor escolhido para cada uma das regiões, e o valor numérico obtido pelo descritor é selecionado na posição do pixel principal de cada região obtida anteriormente, neste exemplo o pixel principal está representado de vermelho. Quando a região de corte ultrapassa os limites da matriz da imagem, ou seja, os vizinhos estiverem na região com coordenadas inexistentes na matriz imagem, por exemplo, (-1, -1), como é o caso do exemplo da Figura 4 (a) este pixel é descartado, e o descritor irá ser aplicado considerando apenas os pixels de coordenadas que pertencentes à imagem. O exemplo representado na

Figura 4. (a) representa o primeiro fracionamento da imagem, calculado para esta fração o valor do descritor de textura e então o *pixel* principal, mostrado de vermelho, recebe este valor, (b) o segundo fracionamento, (c) fracionamento no centro da imagem e (d) o último fracionamento

Figura 5, ilustra em (a) a imagem original, e a criação de uma matriz imagem usando descritores de textura com janela de 5 vizinhos, (b) entropia por histograma de primeira ordem e usando histogramas de segunda ordem os descritores de: (c) entropia, (d) contraste, (e) correlação e (f) IDM. Foi observado que o uso de descritores pode contribuir com o resultado da segmentação, pois eles destacam os objetos e filtram, assim como a desfocagem, parte de ruídos. A Figura 6 é um exemplo do atributo de entropia sobre histograma de primeira ordem, em conjunto com a desfocagem gaussiana, sobre um grão de pólen em que (a) representa a imagem original, (b)

Figura 5. A imagem ilustra: (a) entropia por histograma de primeira ordem, e usando histogramas de segunda ordem foi calculado usando os descritores de textura de: (c) entropia, (d) contraste, (e) correlação e (f) usando o descritor de IDM

a desfocagem gaussiana utilizando $\sigma = 10$, (c) a extração do atributo de textura usando o descritor de entropia sobre histogramas de primeira ordem, (d) desfocagem gaussiana para filtragem de ruídos da imagem (c), usando $\sigma = 10$, (e) representa a segmentação Watershed de (d).

Figura 6. (a) Representa a figura original, (b) a desfocagem gaussiana com $\sigma = 10$, (c) a extração de textura usando o descritor de entropia com janela de 5 (vizinhos) (d) a desfocagem gaussiana da figura (c) usando $\sigma = 10$, (e) segmentação Watershed da imagem (d).

A Figura 7 representa a utilização do mesmo processo que o da Figura 6 mas nesta com a retirada da etapa de desfocagem gaussiana na imagem original. É de forma notável o aumento das regiões segmentadas, *over-segmentation*.

Figura 7. (a) Representa a figura original, (b) a extração de textura usando o descritor de entropia com janela de 5 (vizinhos) (c) a desfocagem gaussiana da figura (b) usando $\sigma = 10$, (d) segmentação Watershed da imagem (c).

III. DELINEAMENTO EXPERIMENTAL

Nesta seção serão descritas as ferramentas, os testes e como foram realizados.

A. Banco de imagens

O banco de imagens foi dividido em dois grupos, as imagens reais, isto é, as imagens capturadas com microscópio a partir de amostras de mel, e as imagens de referência, ou ground - thuth, que foram criadas para serem usadas na verificação da eficiência da segmentação.

1) Banco de Imagens: O banco de imagens de grãos de pólen foi constituído de 333 imagens divididas em 4 classes de espécies, 60 imagens da espécie Fabaceae, 136 imagens de Schinus, 64 de Protium e 73 imagens de Serjania. Na Figura 8 são visualizadas 4 imagens do banco de imagens, sendo a imagem: (a) Fabaceae, (b) Schinus, (c) Protium e (d) Serjania.

Figura 8. Representa os grãos das classes: (a) Fabaceae, (b) Schinus, (c) Protium e (d) Serjania.

2) Banco de imagens de referência: Foram segmentadas manualmente as imagens do banco de grãos, estas imagens foram utilizadas na comparação com as imagens geradas automaticamente pelo módulo segmentador, quanto mais seme-lhantes maior é a eficiência da segmentação. A Figura 9 ilustra as imagens de referência das mesmas classes visualizadas na Figura 8.

Figura 9. Representa uma imagem de referência de cada classe: (a) Fabaceae, (b) Schinus, (c) Protium e (d) Serjania.

B. Métricas

Na comparação dos resultados, foram utilizadas duas avaliações: o tempo de processamento, medido por marcadores de tempo no módulo de segmentação, outra avaliação foi o uso de três métricas baseadas na comparação dos pixels das imagens segmentadas automaticamente com as imagens de referência [2], as métricas utilizadas são ilustradas nas equações onde: a equação (1) é a métrica PCC (percentual de classificação correta), (2) CJ (coeficiente de Jaccard) e (3) CY (coeficiente de Yule), em que VP (verdadeiro positivo), representa o objeto na imagem de referência e segmentada, VN (verdadeiro negativo), que representa o fundo na imagem de referência e fundo na imagem segmentada, FP (falso positivo), que na imagem de referência representa fundo e na imagem segmentada representa objeto e FN (falso negativo), que na imagem de referência representa parte do objeto e na imagem segmentada fundo [18]. Os valores variam entre 0 a 1, sendo 0 o pior resultado e 1 o melhor resultado.

$$PCC = \frac{VP + VN}{VP + FP + VN + FN} \tag{1}$$

$$CJ = \frac{VP}{VP + FP + FN} \tag{2}$$

$$CY = \left| \frac{VP}{VP + FP} + \frac{VN}{VN + FN} - 1 \right|$$
(3)

O ambiente computacional usado para a realização dos testes foi um computador INTEL® Core i7 com frequência de 2.66 GHz, com memória de 12 GB.

C. Configurações dos experimentos

Foram realizados dois experimentos: um experimento preliminar para encontrar os valore de parâmetros para o experimento principal descrito neste trabalho. O experimento principal foi realizado com diversas configurações, tivemos o objetivo de comparar a extração de atributos de textura por descritores, desfocagem gaussiana e a utilização do processo de limiarização da imagem pelo método de seleção interativa [2] no resultado da segmentação Watershed. Os parâmetros obtidos para cada uma das configurações do experimento principal, o valor do σ e o tamanho de janela para o cálculo dos atributos, foram encontrados no experimento preliminar de forma visual, testando diversos valores de parâmetros e confirmando no resultado da segmentação. Para a confirmação destes valores foi utilizado os mesmos parâmetros, mas em outras imagens, onde também foi verificado se o resultado não apresentou oversegmentation, repetindo tal processo até obtenção dos valores que melhor segmentasse os grãos. Os experimentos foram compostos pelas seguintes etapas: importação da imagem, desfocagem da imagem original, processamento da imagem usando atributos de textura, desfocagem da imagem processada e a segmentação por Watershed. A Figura 10 ilustra o processo seguido para a realização dos testes. O experimento

Figura 10. Etapas seguidas para a realização dos testes

principal foi realizado utilizando cinco combinações distintas

de configuração, a 1° configuração foi a utilização do descritor de textura de entropia sobre histograma de primeira ordem, e as configurações 2° , 3° e 4° baseadas em histograma de segunda ordem com os descritores de textura de entropia, contraste e correlação, respectivamente e na 5° configuração foi utilizado o descritor de textura de entropia sobre histograma de primeira ordem, que se mostrou mais rápido no cálculo da nova matriz, em junção com a binarização da imagem, para a diminuição da variação dos valores de cor.

Tabela I

Valores dos parâmetros usados nos experimentos, encontrados no experimento preliminar. A primeira coluna representa a configuração, a segunda apresenta o valor de σ utilizado na imagem original, a terceira coluna mostra o valor do parâmetro σ utilizado na matriz de extração de atributos

Valores dos parâmetros para cada configuração					
σ imagem original	σ matriz de atributos				
30	10				
40	4				
2	2				
15	3				
30	10				
	$\begin{array}{c} \text{los parâmetros para ca} \\ \hline \sigma \text{ imagem original} \\ \hline 30 \\ \hline 40 \\ \hline 2 \\ \hline 15 \\ \hline 30 \end{array}$				

IV. RESULTADOS E DISCUSSÃO

Na Tabela II pode ser visualizado o tempo total que cada configuração consumiu para a segmentação das imagens e o tempo médio da segmentação por imagem. É importante lembrar que as mesmas imagens foram usadas em todas as configurações. A Tabela V traz o resultado das métricas

Tabela II Tempo de execução de cinco configurações para a segmentação. A primeira coluna mostra a configuração usada, a segunda coluna apresenta o tempo total levado para segmentar o banco de imagens, e a última coluna corresponde ao tempo médio de execução de cada imagem.

Tempo consumido em cada configuração					
Configuração	Tempo total (s)	Tempo individual (s)			
Ent. 1 ^o	707	2,123			
Ent. 2 ^o	14200	42,64			
Cont. 2 ^o	15420	46,3			
Corre. 2º	15690	47,11			
Ent. e Bin. 1º	678	2,036			

expostas nas equações, (1), (2) e (3). Estas foram calculadas computacionalmente comparando a imagem segmentada com a imagem de referência, quanto mais próximo o valor das métricas de 1, ou 100%, melhor o resultado de segmentação. Foi observado que o tempo para realizar a segmentação

Tabela III PCC EM CADA CONFIGURAÇÃO

Classe	Ent. 1 ^o	Ent. 2°	Cont. 2º	Corre. 2º	Ent. e Bin. 1º
Fabaceae	0,983	0,9433	0,963	0,7661	0,9898
Protium	0,9852	0,9305	0,9685	0,7555	0,9893
Schinus	0,9883	0,9484	0,9765	0,7614	0,9919
Serjania	0,9798	0,9388	0,9597	0,7714	0,9861
Média	0,9849	0,948	0,967	0,764	0,9893

Tabela IV JACCARD EM CADA CONFIGURAÇÃO

Classe	Ent. 1º	Ent. 2º	Cont. 2º	Corre. 2º	Ent. e Bin. 1º
Fabaceae	0,4528	0,1818	0,2525	0,0388	0,6004
Protium	0,4898	0,1691	0,2826	0,0379	0,5874
Schinus	0,5566	0,2050	0,3412	0,0425	0,6449
Serjania	0,4247	0,1639	0,206	0,0472	0,5191
Média	0,4961	0,18	0,271	0,0416	0,5879

Tabela V YULE EM CADA CONFIGURAÇÃO

Classe	Ent. 1°	Ent. 2°	Cont. 2º	Corre. 2 ^o	Ent. e Bin. 1º
Fabaceae	0,6911	0,5689	0,6048	0,3077	0,7409
Protium	0,7236	0,565	0,6026	0,3197	0,7413
Schinus	0,7825	0,6374	0,6415	0,3450	0,7914
Serjania	0,6554	0,5182	0,4472	0,337	0,67
Média	0,7131	0,5724	0,574	0,3273	0,7359

por Watershed nas imagens usando processamentos obtidos pela matriz de coocorrência, ou seja, nas configurações 2,3,4 obtiveram altos custos de tempo. Já os experimentos que usaram a construção de imagens pelo cálculo de textura em histograma de primeira ordem obtiveram menor tempo de processamento. As configurações, 1 e 5, que utilizaram histogramas de primeira ordem para o cálculo dos atributos de textura obtiveram tempo de processamento mais rápido, comparado ao tempo das outras configurações, destacando-se a configuração 5 com tempo médio para a segmentação individual de 2,036 segundos. Interessante observar que a utilização da limiarização na configuração 5, comparado a configuração 1, que não a utilizou, o tempo de segmentação média para cada imagem foi de 2,123 segundos, isto ocorreu pois a limiarização reduziu a quantidade de informações, como fundo e sujeiras, diminuindo a variação dos pixels e consequentemente a quantidade de objetos de interesse, para a segmentação. A Figura 11 apresenta um exemplo de uma imagem em que a configuração 1 segmentou maior quantidade de objetos que a configuração 5. Mesmo com maior quantidade de objetos segmentados, na configuração 1, é possível visualizar que a segmentação utilizando a configuração 5 além de segmentar os objetos corretamente, incluindo na quantidade dos mesmos, tornou as bordas dos objetos mais suaves, decorrente da limiarização em conjunto com a desfocagem. Esta Figura está organizada da seguinte forma: (a) representa a imagem de referência, (b) a configuração 1 e (b) o resultado da segmentação utilizando a configuração 5.

Figura 11. (a) Imagem de referência, (b) imagem segmentada utilizando a configuração 1 e (c) a segmentação utilizando a configuração 5

Para a configuração 1 a classe de imagens que melhor foi segmentou foi a *Schinus*, com 98,83% de *PCC*, 55,66%

para a métrica Jaccard e 78,25% para a métrica Yule. Na configuração 2 a classe Schinus também obteve melhor desempenho, com PCC de 94,84%, Jaccard 20,50% e Yule com 63,74%. Como nas configurações 1 e 2, na configuração 3 a classe Schinus também obteve melhor resultado de segmentação, com 97,65% de PCC, 34,12% de Jaccard e 64,15%. Na configuração 4 é possível verificar pelos valores baixos da métrica de Jaccard, que a imagem sofreu oversegmentation, obtendo acerto médio de 4,16% dos grãos de pólen. No experimento 5, a classe com maior acerto na segmentação também foi a Schinus com 99,19% de PCC, 64,49% de Jaccard e 79,14% para a métrica Yule. A Figura 12 mostra a comparação da segmentação para cada configuração de uma imagem do banco com a imagem de referência, onde 12.(a) representa a imagem de referência e a segmentação gerada por cada configuração, sendo 12.(b) a configuração 1, 12.(c) 2, 12.(d) 3, 12.(e) 4 e 12.(f) a configuração 5.

Figura 12. Comparação da imagem de referência (a), com a segmentação gerada em cada experimento, sendo (b) utilizando a configuração 1, (c) configuração 2, (d) configuração 3, (e) configuração 4 e (f) utilizando a configuração 5

Das 5 configurações usadas, a 1 e a 5 se destacaram no tempo de segmentação, na configuração 1 com tempo médio por imagem de 2,123 e na segmentação utilizando a configuração 5 foi de 2,036 segundos, outro fator de destaque é o resultado da segmentação, recebendo 98,49% e 98,93% respectivamente, na média da métrica PCC, mas essa métrica leva no numerador a quantidade de verdadeiros positivos somado a quantidade de falsos positivos, devido a quantidade de *pixels* representando o fundo ser bem expressivo, o valor foi elevado. Ocorrendo uma grande quantidade de pixels representando o fundo, o valor da métrica PCC tende ao valor de 100%. Os menores valores para a métrica foi onde ocorreu a presença de over-segmentation, onde tal é contabilizado como falso negativo, ou seja, o valor da métrica tende a 0%. É possível notar na Figura 13 e também pelos valores da métrica PCC, apresentada na tabela III, que a configuração 4 gerou maior quantidade de imagens com over-segmentation. Nesta Figura, da classe Schinus, (a) representa a imagem de referência e (b) a imagem segmentada automaticamente, utilizando a configuração 4.

Já observando a métrica *Jaccard* é possível notar que a configuração 5 obteve maior quantidade de *pixels* delineados, ou seja maior quantidade de verdadeiros positivos comparando com os *pixels* que fazem parte do objeto pólen na imagem de referência e na imagem segmentada automaticamente. É possível observar que a segmentação utilizando a configuração 1 gerou maior quantidade de falsos negativos e menor quantidade de *pixels* verdadeiro positivos que a segmentação utilizando a configuração 5, delineando corretamente em média de 58,79% dos grãos de pólen contra 49,61% da configuração 1. A Figura 14 mostra diversas comparações, em que (a) é a

Figura 13. (a) Imagem original (b) Imagem com *over-segmentation*, gerada pelo a configuração 4

imagem de referência, (b) a imagem segmentada utilizando a configuração 1 e (c) a segmentação usando a configuração 5.

V. CONCLUSÕES E TRABALHOS FUTUROS

De acordo com os resultados, o uso da configuração 5 se mostrou melhor que as outras configurações, devido a dois fatores: ao tempo consumido e a porcentagem de acerto da segmentação. O grupo estuda outras ferramentas de processamento para aumentar a velocidade e a precisão desta técnica de segmentação. Como trabalho futuros, além do uso de outras técnicas, novas imagens serão capturadas com o intuito de enriquecer os experimentos. No final o módulo de segmentação será incluído no módulo geral do projeto POLEN para enviar informações dos grãos de pólen para o módulo de classificação, que está sendo desenvolvido por um membro do grupo INOVISAO.

AGRADECIMENTOS

Este trabalho teve o apoio financeiro da Universidade Católica Dom Bosco, UCDB, da Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul, FUNDECT e do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq e agradecemos ao Daniel Sage, membro do *Biomedical Imaging Group*, por disponibilizar o código-fonte do *plugin* que realiza a segmentação por Watershed para estudo e desenvolvimento dos testes apresentados deste trabalho.

REFERÊNCIAS

- W. P. Amorim. Extração de atributos e análise discriminante aplicadas na detecção de defeitos em couro bovino(dtcouro). pages 17–18, UCDB, 2006.
- [2] A. Bovik. The Essential Guide to Image Processing. Electronics & Electrical. Academic Press, 2009.
- [3] R. Burduk, M. Kurzynski, M. Wozniak, and A. Zolnierek. *Computer Recognition Systems 4*. Number v. 4 in Advances in Intelligent and Soft Computing. Springer, 2011.
- [4] E. Crane. O Livro do Mel. Editora Nobel, São Paulo, 1985.
- [5] J. Devillers, M. Morlot, M. Pham-Delègue, and J. Doré. Classification of monofloral honeys based on their quality control data. *Food Chemistry*, 86(2):305 – 312, 2004.
- [6] C. A. FerreroI, H. D. Lee, N. S. C. S. R. Coy, J. J. Fagundes, R. B. Machado, E. A. Cherman, and F. C. Wu. Comparative study of computacional models generated from representations of colonoscopic images: normal mucosal tissues vs mucosal tissues of colic polyp. *Revista Brasileira de Coloproctologia*, 29(1), 2009.
- [7] N. Q. Haas. Automated pollen image classification. Master's thesis, University of Tennessee, 2011.
- [8] K. D. I. Haralick, Robert M.; Shanmugam. Textural features for image classification. *IEEE Systems, Man, and Cybernetics Society*, 1973.

Figura 14. (a) Imagem de referência, (b) segmentação utilizando a configuração 1 e (c) a segmentação utilizando a configuração 5

- [9] H. Heijmans and J. Roerdink. Mathematical Morphology and Its Applications to Image and Signal Processing. Computational Imaging and Vision. Kluwer, 1998.
- [10] C. Kamath. Scientific Data Mining: A Practical Perspective. Society for Industrial and Applied Mathematics, 2009.
- [11] W. B. Leal. Segmentação e reconhecimento baseado em textura: Técnicas e ferramentas. Technical report, Engenharia de Computação, UCDB, Campo Grande, 2004.
- [12] A. L. d. S. e. S. Maria Aparecida Mello Alves, Regina Célia Della Modesta. Desenvolvimento do perfil sensorial de méis silvestres (apis mellifera) de vários municípios do estado de alagoas. Technical report, Ministério da agricultura, Pecuária e Abastecimento, 2005.
- [13] F. Meyer. Topographic distance and watershed lines. Signal Process., 38(1):113–125, July 1994.
- [14] M.Fernández-Delgado, P.Carrión, E.Cernadas, and J.F.Gálvez. Improved classification of pollen texture images using svm and mlp. Benalmádena (España), 08/09/2003 2003.
- [15] Z. Qian, L. Cao, W. Su, T. Wang, and H. Yang. Recent Advances in Computer Science and Information Engineering. Number v. 5 in Lecture Notes in Electrical Engineering. Springer, 2012.
- [16] R. Rangel. Mel brasileiro conquista o mercado externo. Inovação em pauta-10, Finep, 2011.
- [17] J. B. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and parallelization strategies. *Institute for Mathematics and Computing Science University of Groningen*, 2008.
- [18] P. L. Rosin and E. Ioannidis. Evaluation of global image thresholding for change detection. *Pattern Recognition Letters*, 24(14):2345 – 2356, 2003.