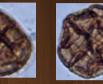

Prof. Hemerson Pistori Dom Bosco Catholic University *Campo Grande - Brazil*

A New Strategy for Applying Grammatical Inference to Image Classification Problems H. Pistori, A. Calway and P. Flach

Outline


- Background
- Related Work Review
- Proposed Approach
- Experiments
- Results
- Conclusion and Future Works

Pattern Recognition

Pollen Grains from the Fabaceae Species Training instances from class A

Supervised Machine Learning

Pollen Grains from the Serjania Species Training instances from class B

#include <opencv2/imgproc/imgproc.hpp>
#include <sys/stat.h>
#include <pthread.h>
#include <errno.h>

using namespace cv; using namespace std;

const char configFileName[] = "../data/config.xml";

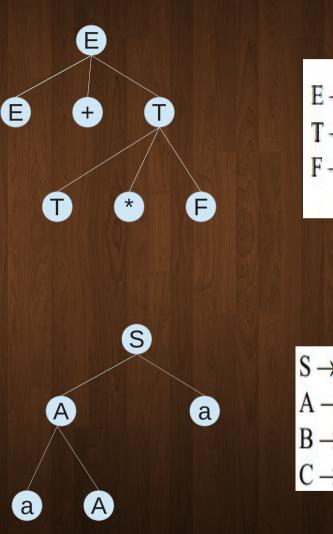
string descriptorType = "SURF"; string matcherType = "FlannBased";

void detectKeypoints(const Mat& queryImage, vector<KeyPo queryKeypoints, const vector<Mat>& trainImages, vector<vector<KeyPoint> >& trainKeypoints, Ptr<FeatureDet featureDetector);

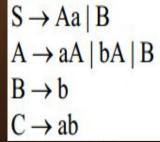
int main(int argc, char** argv) {

readConfiguration();

Ptr<FeatureDetector> featureDetector;


package larvic.core;

import java.io.File; import java.io.FileReader;


public class CustomClassifier {

```
private Instances instances;
private Classifier classifier;
public double classifyInstance(Instance instance){
    try {
        if (!built){
            getClassifier().buildClassifier(getInstances());
            built = true;
        }
        instance.setDataset(getInstances());
        return getClassifier().classifyInstance(instance);
    } catch (Exception e) {
        throw new RuntimeException(e.getCause());
    }
}
```

Alphabetic Symbols and Strings

 $E \rightarrow E + T | T$ $T \rightarrow T * F | F$ $F \rightarrow (E) | i$

Automata, Parsers, Derivation Trees (Syntax Analysis)

Grammars

#include <opencv2/imgproc/imgproc.hpp>
#include <sys/stat.h>
#include <pthread.h>
#include <errno.h>

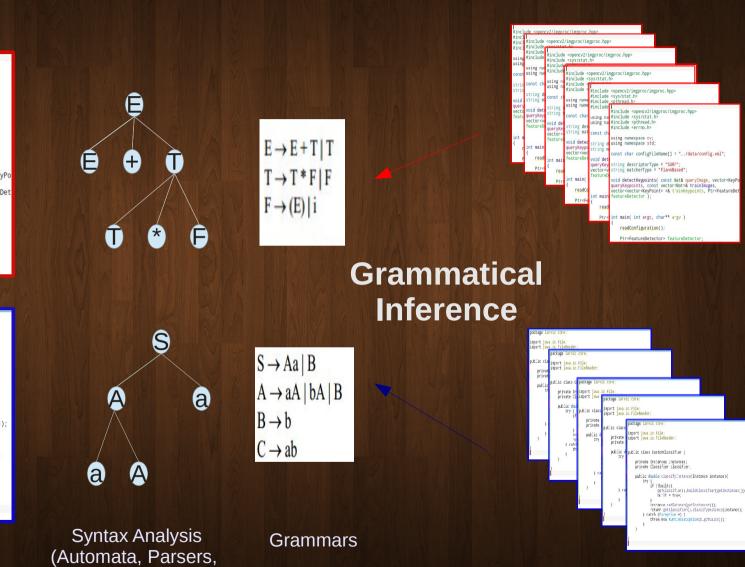
using namespace cv; using namespace std;

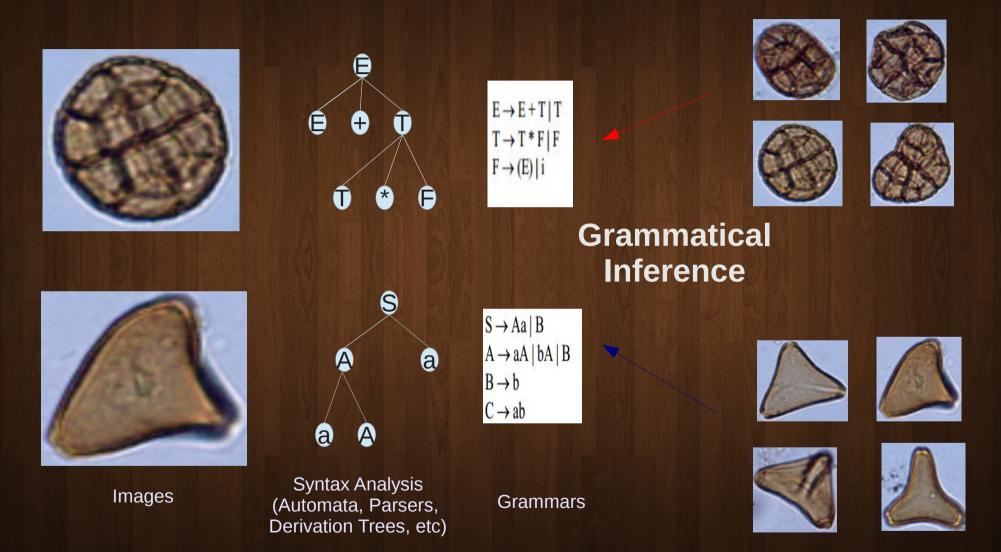
const char configFileName[] = "../data/config.xml";

string descriptorType = "SURF"; string matcherType = "FlannBased";

void detectKeypoints(const Mat& queryImage, vector<KeyPo queryKeypoints, const vector<Mat>& trainImages, vector<vector<KeyPoint> >& trainKeypoints, Ptr<FeatureDet featureDetector);

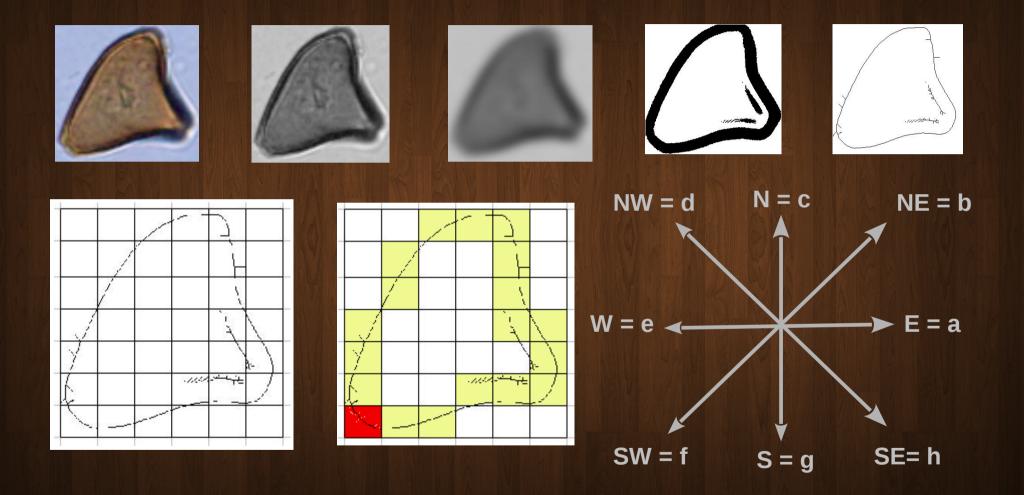
int main(int argc, char** argv)

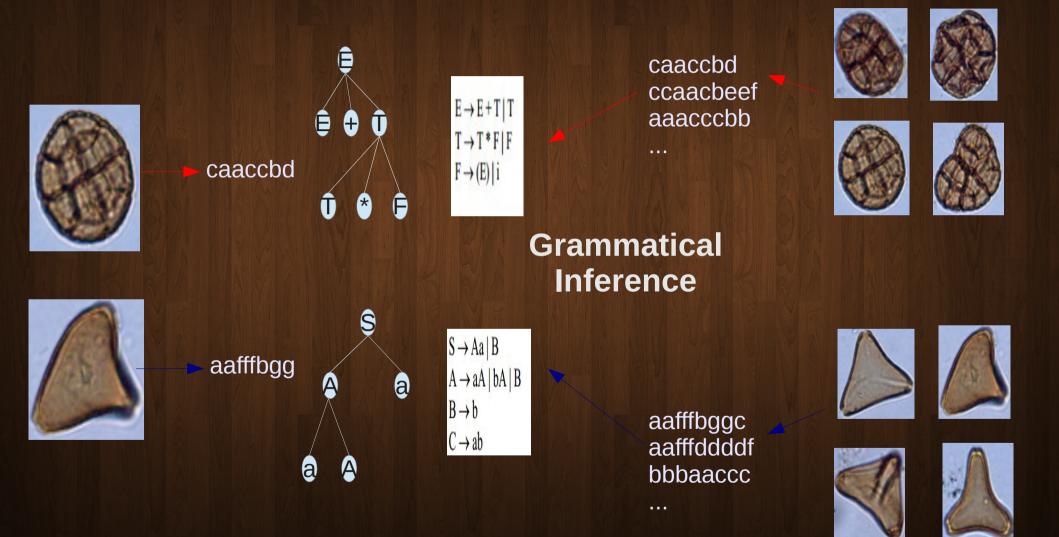

readConfiguration();


Ptr<FeatureDetector> featureDetector;

package larvic.core; import java.io.File; import java.io.FileReader; public class CustomClassifier { private Instances instances; private Classifier classifier; public double classifyInstance(Instance instance){ try { if (lbuilt){ getClassifier().buildClassifier(getInstances()); built = true; } instance.setDataset(getInstances()); return getClassifier().classifyInstance(instance); } classifier().classifyInstance(instance); } classifier().classifier().classifyInstance(instance); particlassifier().classifier().classifyInstance(instance); particlassifier().classifier().classifyInstance(instance); particlassifier().classifier(

Alphabetic Symbols and Strings


Derivation Trees, etc)



Where is our Alphabet?

Central trade-off question: Should we somehow convert images to strings or replace the string for something else and create other types of grammars and syntax analysers?

A string for this Serjania pollen sample: c c c b c b a a g g g a g g e e f e e

Our Proposal

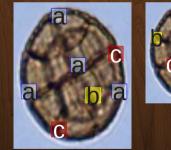
Original

Keypoint detection

Bag of Words

Symbols Mapping

Scan: aabcaacbac


Alternative Scan Order:

Radial

Coarse Reading

SURF PYRAMID

Experiments: Surf Keypoint Detector, K-Testable GI, Ignore Token Error Recovery Scan order: Random, Reading, Radial, Pyramid, Coarse Reading (5p, 10p, 20p)

Experiments and Results – Squares and Triangles Relations

			Dic. Size	PYRAMID	RAND	RADIAL	READ	READ 5x5	READ 10x10	READ 20x20
			2	20.00%	13.00%	25.00%	22.00%	21.00%	23.00%	48.00%
	1		5	94.00%	71.00%	67.00%	91.00%	77.00%	80.00%	83.00%
		F	8	89.00%	69.00%	70.00%	90.00%	92.00%	94.00%	88.00%
			11	96.00%	78.00%	80.00%	89.00%	94.00%	94.00%	92.00%
			14	98.00%	85.00%	76.00%	88.00%	83.00%	91.00%	94.00%
		\wedge	17	96.00%	86.00%	79.00%	89.00%	79.00%	95.00%	91.00%
			20	91.00%	84.00%	82.00%	87.00%	95.00%	98.00%	92.00%
			23	93.00%	91.00%	83.00%	89.00%	92.00%	89.00%	95.00%
			26	92.00%	85.00%	77.00%	79.00%	94.00%	90.00%	96.00%
			29	94.00%	86.00%	78.00%	82.00%	90.00%	95.00%	92.00%
			32	96.00%	84.00%	76.00%	83.00%	91.00%	93.00%	81.00%
			35	95.00%	80.00%	83.00%	85.00%	92.00%	93.00%	86.00%
			38	96.00%	78.00%	82.00%	86.00%	92.00%	88.00%	80.00%
			41	95.00%	78.00%	83.00%	81.00%	94.00%	92.00%	89.00%
			44	<mark>92.00%</mark>	83.00%	77.00%	89.00%	91.00%	92.00 %	92.00%
			47	<mark>99.00%</mark>	83.00%	76.00%	80.00%	86.00%	89.00%	88.00%
			50	<mark>96.00</mark> %	89.00%	73.00%	89.00%	93.00%	87.00%	84.00%

F-Measures – 6 Classes

Experiments and Results – 15 Scenes

KNN 7.80% 46.40% 51.40%	SVM 6.70% 50.40%	C4.5 11.90% 38.10%
46.40%	A CONTRACTOR OF	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	50.40%	38 10%
51 40%		30.1070
51.4070	55.70%	57.70%
15.00%	25.70%	25.00%
15.00%	12.30%	15.80%
14.90%	11.50%	11.80%
12.50%	6.70%	7.40%
13.10%	10.80%	15.50%
11.40%	16.10%	11.60%
5.10%	19.10%	9.30%
11.30%	21.50%	24.70%
10.70%	16.50%	17.90%
8.80%	13.00%	15.80%
11.30%	9.20%	20.80%
6.90%	14.10%	22.70%
16.11%	19.29%	20.40%
	15.00% 15.00% 14.90% 12.50% 13.10% 11.40% 5.10% 11.30% 10.70% 8.80% 11.30% 6.90%	15.00%25.70%15.00%12.30%14.90%11.50%12.50%6.70%13.10%10.80%11.40%16.10%5.10%19.10%11.30%21.50%10.70%16.50%8.80%13.00%11.30%9.20%6.90%14.10%

F-Measures – Dic. Size = 50

Conclusions

- New approach to generate strings from images
- Encouraging first results
- Preserves spatial and structured information (unlike BOW)

Future Works

- Other grammar inference approaches and error recovery strategies during parsing
- Negative samples
- Stochastic grammars
- Code optimizations
- Experiments using other datasets