SVM With Stochastic Parameter Selection For Bovine Leather Defect Classification

Roberto Viana, Ricardo Rodrigues

Marco A. Alvarez And Hemerson Pistori

GPEC – Research Group on Engineering and Computing
Universidade Católica Dom Bosco – UCDB - Brazil

Utah State University – USU - USA

Topics

- Leather defects classification
- Support Vector Machines
- SVM Parameter Tunning via Simulated Annealing
- Experiments
- Results
- Conclusions and Future Work

Bovine Leather Classification

Defects: wrinkles, bot fly closed wounds, vaccine abscess, bot fly open wounds, ticks marks, veining (in wetblue), open cuts (wetblue)

DTCOURO – Automated System for **Bovine Leather Classification**

Huge dataset of training images

Co-occurrence Matrix Interaction Maps

Gabor

LBP

Color

Hough

Feature Extraction + Feature Selection

SVM

RBF

KNN

FF-NN Adaptree

Support Vector Machines

- Maximum Margin Classifier (Linearly Separable)
- Kernel functions to extend the basic idea to nonlinearly separable class/vectors
- Good generalization performance (many empirical results in different machine learning situations)
- Well established theoretical support
- Parameter tunning for SVM optimal learning performance may be hard and problem dependent

SVM Parameter Tunning via Simulated Annealing

Images from Anne Smith's website: http://biology.st-andrews.ac.uk/vannesmithlab/

- SA: Local improvement stochastic search that admits "bad steps" to escape local minima/maxima
- Not too bad steps are taken more often than the steps that are too bad
- As the search proceeds, bad steps are taken less often
- SVM Parameter Tunning: Automatically find parameters values that maximize Correct Classification Rate (or any other performance measure) through local improvement

Experiments

- 15 different raw-hide pieces (600x450 Colored Images)
- 14722 samples (20x20 pixels each) from tick marks, brand marks, cuts and scabies (most common defects in Brazil)
- Feature Extraction: Interaction Maps, Cooccurrence matrices and Color (RGB, HSB) Histogram Attributes
- 5-Fold Crossvalidation

Experiments

Experiments

Experiment 1: Correct Classification Rate (CCR) Before and After SA Tunning

- Platt's Sequential Minimal Optimization
 Algorithm SMO (Weka's Implementation)
- Standard Regularized Support Vector Classifier *C*-SVC (LibSVM implementation ported to Weka)
- Parameters:
- * *C* Error penalty (some vectors outliers may cross the "separation hyperplane")
 - * Gamma RBF scale parameter

Experiment 2: CCR and Training Time classifiers comparition

• SMO, *C*-SVC (LibSVM), Feed-Forward Neural Networks, Adaboost (using KNN and C4.5 as weak classifiers)

Results

Experiment 1: Correct Classification Rate (CCR) Before and After SA Tunning

				CCR		
			Best	Weka's	CCR After	Absolute
	Exec. Time	Best C	Gamma	Default	SA Tunning	Improvement
SMO	10 hours	24.165	0.931	88,95%	93,10%	4,15
LIBSVM	4 hours	49.494	1.008	76,16%	99,59%	23,43

Experiment 2: CCR and Training Time classifiers comparition

Algorithm	Training time (s)	Accuracy (%)		
LibSVM	172.43	99.47		
MLP	7322.86	99.24		
A.(K-NN)	0.07	95.75		
A.(C4.5)	52,4	95.43		
SMO	2433.62	93.10		

Conclusions and Future Work

- Important problem (Leather defects detection) has been presented to VC community
- Machine Learning techniques seem to be applicable
- Automatic parameters optimization improved results
- LibSVM tunned by Simulated Annealing has shown best performance in the results
- Experiments will be conducted on larger datasets that are been constructed by DTCOURO's project

Additional Information

www.gpec.ucdb.br/pistori www.gpec.ucdb.br/dtcouro (in portuguese)

Acknowledgments

Invitation: Brazilian Symposium on CG and IP – Papers published by IEEE - October 2008 - UCDB

www.gpec.ucdb.br/sibgrapi2008