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SUN Database: Large-scale Scene Recognition from Abbey to Zoo
Jianxiong Xiao — MIT and Brown University

* First large scale image database for scene recognition

130,519 images and 899 categories

* Evaluation of state-of-the-art algorithms and human performance

* Introduces the scene detection problem (in multiple scenes images)
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The Evolution of Object Categorization and the Challenge of Image Abstraction
Sven Dickinson — University of Toronto

History of object categorization and degree of image abstraction

Need for new image abstraction mechanisms

Large survey (275 refs)

Categorical
Model

Degree of Image

Abstraction

— at one extreme, the
raw input image

— at the other extreme,
a categorical shape
model

— betwen them, a large
representational gap
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1970

— 3-D categorical
shape models
composed of
abstract volumetric
parts

— hierarchical
—variable structure
— wviewpoint invariant

— idealized images
— textureless objects
— simple, blocks
world scenes

— image contours
map one-to-one to
salient model
(wolumetric part)
contours
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Examples:

EBinford (1971)

Agin and Binford (1976)
Mewvatia and Binford (1977)
Marr and Mishihara (1978)
Brooks {1983}

Biederman (13E85])
Penitland [1388)

Dickinson et al. (1992)
Bergevin and Levine (1993)

1980

— 3-D exemplar shape
models specifying
exact geometry

— effectively a 3-D
template, such as
polyhedron or CAD
model

— non-hierarchical

— fixed structure

— viewpoint invariant

— more complex
objects, but still
textureless

— image contours {(or
Corners) mapg
one-to-one to model
contours (or corners)
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Examples:

Grimzon and Lozano-Perez (1984)
Lowe [1987)

Sillberberg et al. (1985)

Alter and Grimson (1988}
Thompson and Mundy (1987)
Lamdan et al (1990)
Huttenlocher and Ulliman (1990)
Alleer (1994)

Cass (1998)

1990

— 2-D exemplar
appearance models
— effectively a 2-D
image template

— non-hierarchical
— fixed structure

— viewpoint depen-
dent
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— complex textured
objects

— image pixels map
one-to-one to model
pixels

Examples:

Kirby and Sirowvich (1550)

Turk and Pentiand {1991}

Murase and Mayar [(1995)

Rao and Ballard {1995)

Leonardis and Bischoff (1996)
Moghaddam and Pentland (1997)
Ohiba amd Ikeuchi (1997)

Camps et al. (1998)

Black and Jepson (199E]

2000's

— 2-D categorical
appearance models
— hierarchical

— fixed structure

— wiewpoint depen-
demnt
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— local appearance
abstraction

— local features map
one-to-one to model
features

— complex textured
objects in the
presence of clutter,
occlusion

Examples:

Schmid and Mohr (1997}

Liowee | 19990

Schisle and Crowiley (2000
Carmeiro and Jepson (2002)
Mikolajczyk and Schimid (2004)
Lazebnik et al. (2005)

Ferrari et al_ (2006)

Fei Fei et al. (2006)

Fergus etal. (2007)

2010
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Relative Contribution of Perception/Cognition and Language on Spatial
Categorization
Soonja Choi and Kate Hattrup — San Diego State University

* Both universal cognition/perception and language-specific semantics guide spatial
categorization

e Use of Universal or Language specific resources depends on type and context
* Experiments with Koreans and English speakers
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On the Definition of Categories for Image Classification Evaluation
Simone Santini

 Semiological level of signification (portion of meaning that does not depend on
context)

* Coherent set of categories for image analysis evaluation

* Semantic axis:
— Anthropic: openness, expansion, transience, concealment, navigability, fractality;
— Social: presence of people, color;

— Cultural: “there are so many social forces that influence the connotations of a picture that isolating a
semiological level might be impossible”

anthropic social cultural
kantian |darwinian human culture index
sSpace survival social socially
and value concepts |sanctioned
time color individuals
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A Survey of Grammatical Inference Methods for Natural Language Learning
Arianna D’Ulizia et alii — CNR, Italy

Context Free Grammars Only

Literature review only

Presentation sel Type of information
Tex Informant  Supervised Unsupervised  Semi-super-
vised
ADIOS X X
EMILE X X
c-GRIDS X X
CLL X X
CcDC X X
INDUCTIVECYK X X
LAgtS X X
GA-based X X
ALLis X X
ABL X X
UnsuParse X X
Incremental parsing X X
Self-training X X
Co-training X X




Object Bank: A High-Level Image Representation for Scene Classification & Semantic
Feature Sparsification
Li-Jia Li et alii — Stanford and CMU

* Visual knowledge readily available on the Internet (LabelMe and ImageNet)

* Features: Responses from object sensing filters built on a generic collection of
labeled objects

* Object detector of Felzenszwalb et al.
200 most frequenty objects in Labelme, Imagenet, ESP and Flickr

Object Detector Responses Spatial Pyramid

Object Bank Representation
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Predicate Logic based Image Grammars for Complex Pattern Recognition
Vinay Shet et alii — Siemens and University of Maryland

» Bilattice based Logical Reasoning Framework
 Pedestrians and Surface to Air Missile Site detection

* Contextual Cues, Scene Geometry and Object Pattern
Constraints as Rules in a Logic Programming Language

e Pattern Grammar as logical rules over predefined atoms

* Rules are manually encoded and designed to facilitate
scalability

Degree of information

* Parts Detectors (E.g.: Human Parts) get the facts or
evidences

L J

Degree of belief

* Rule weight optimization using KB-NN

Assume the following set of rules and facts:

Rules Facts
O (human(X.Y.S) < head(X.Y.S)) = (0.40.0.60) ¢ (head(25,95,0.9)) = (0.90,0.10)
¢ (human(X.,Y,S) — torso(X.Y.S)) = O 30.0.70) ¢ (rorso(25,95.0.9)) = (0.70,0.30)
¢ (—human(X.Y.S) < —scene_consistent (X ,Y,S)) = (0.90,0.10) | ¢(—scene_consistent(25,95,0.9)) = (0.80,0.20)

Inference is performed as follows:
cl(¢)(human(25,95,0.9)) = (0,0) v [(0.4,0.6) A (0.9,0.1)] < (0,0) v [(0.3,0.7) A (0.7.0.3)] = —({0,0) v [(0.9,0.1) A (0.8.0.2)])
= (0.36.0) = (0.21,0) & —=(0.72,0) = (0.4944.0) < (0,0.72) = (0.4944.0.72)




Building high-level features using large scale unsupervised learning

Quoc V. Le et alii — Stanford

10 million 200x200 image frames from youtube videos

 17% - percentage of faces in dataset (frames containing faces or area covered by

faces ?)
e 1000 machine during one week
* Grandmother cell
 Deep autoencoder with sparsity
e Local receptive fields (RF)
* Learning: Topographic ICA
* 6 Sublayers (3 layers)
* Experiment: selection of best
neuron and thresholds uses
classif. Accuracy (supervised)

One layer

1

Input to another layer above
(image with 8 channels)

Number of output
channels = 8

Number of input
channels =3 RGBR

Image Size = 200



A Stochastic Grammar of Images
Song-Chun Zhu et alii - University of California

* Visual dictionaries and and-or graph composition to fill semantic gap (symbols and
raw signals)

e Stochastic grammars i
¢ Combine bottom-up and top-down procedures
* Graphical models (MRF)

e Semi-automatic parsed - al—

surfaces

images: http://www.imageparsing.com/
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http://www.imageparsing.com/

Discovering Higher Level Structure in Visual SLAM
Andrew P. Gee et alii — University of Bristol

* Discovery of planes and lines

* Predictive filtering (EKF)

* Dynamically changes in state size
 Combines points (or edglets) with planes

and lines




FAB-MAP: Appearance-Based Place Recognition and Mapping using a Learned Visual

Vocabulary Model

Mark Cummins and Paul Newman — University of Oxford

* Uses bag-of-words (BoW)

* Tree-Structured Bayesian Network and Recursive Bayesian Filtering in place of
Term Frequency — Inverse Document Frequency (TF-IDF)

* Chow Liu algorithm

* Tackles perceptual Aliasing and Variability using a Probabilistic Model on top of

BoW
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Visual Synset: Towards a Higher-level Visual Representation
Yan-Tao Zheng et alii — National University of Singapore and Google Inc. USA

* Extends bag-of-words

* Polysemy: delta visual phrases (co-occurrance + spatial inf.) - Frequent item-set
mining (FIM)

* Synonymy: visual synsets (synonymy sets) — supervised learning — labeled image
classes (“semantic”) — Information Bootleneck Principle

e Visual lexicon = delta visual phrases and visual words

Visual
synset

\_ Visual ?
lexicon BY g™=



Syntactic Image Parsing using Ontology and Semantic Description
Ifeoma Nwogu et alii — University of Rochester and University of Buffalo

* Formal ontology for natural outdoor scenes (Mereological Relationships and First
Order Logic)

* Image grammar based in F. S. Ku proposal (1970)

* Does not present the connexion between the Grammar formalism and First Order
Logic or between the Grammar and the Parsing Strategy

* Low-level: MRF Graph of Superpixels (over segmentation)
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primitive pattern
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Multi-modal Semantic Place Classification
A. Pronobis et alii — Royal Inst. of Technology, Sweden

 Combination of clues: local (SIFT), global (CRFH) visual features and laser scan
« SVM in two levels (each clue, resulting scores)

 Odometry information to help “Semantic Labeling” (give a name to the place
where the robot is ?)

Pronobis, Jensfelt, Mozos, and Caputo / Multi-modal Semantic Place Classification 305

Semantic Labeling System
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Fig. 3. Architecture of the semantic space labeling system based on place classification (LTM: Long-Term Memory; STM:
Short-Term Memory).



Evaluating Bag-of-Visual-Words Representations in Scene Classification
Jun Yang et alii — CMU and City University of Hong Kong

Evaluate “text classification
analogies” to produce different Bag-
of-Visual Words (term weighting and
normalization, stop word removal,

feature selection, ...) and other BoVW @

. - Keypoint
“parameters “(vector size, use of 4 A @E f:éi;e
spacial information, ...) ceypaints : .; g
Datasets: TRECVID 2005 (20 most - 2 1%

. . ‘\. \\ 9 Visual-word
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How could we use, improve and merge these works

Xiao (SUN Dataset)

— Benchmark to evaluate our proposal

Dickson (Evolution of object categorization)

— Support our quest for new structural representation and inference mechanism
Choi (Spatial perception and language)

— We must take into account during our research

Santini (Definition of categories)

— We must take into account when building our grammar

D Ulizia (Survey on grammar inference)
— Maybe we can use/adapt one of these method for visual grammar learning
Li (Object Bank)
— Maybe we can improve this method introducing higher level structure using grammars

Shet (Predicate Logic based Visual Grammar)

— Can be used as our representation mechanism
Le (Large scale unsupervised learning)

— Maybe we can also benefit from paralelism and grid computing

Zhu (Stochatisc grammar of images)

— Maybe we can use some of the general rules they have proposed



How could we use, improve and merge these works

Gee (Higher level structure for SLAM)

— Maybe we can get even higher level structures and extend the states used by the Kalman Filter

Newman (FAB-MAP)

— Not sure ... compare against ?

Zheng (Visual Synset)

— Can be used as grammar atoms ... facts ...

Nwogu (Ontology)

— Maybe the superpixel concept is usuful

Pronobis (Multi-model)

— We can also use multi-model ...

Yang (Evaluation bag-of-words)

— Not sure if we must use bag-of-words at the low level feature level. Maybe we can compare the
alternatives



